Giúp mình nhanh với ạ và sao dùng đó ạ
Giúp mình giải Fill in each blank with a an the or X Từ câu 1 đến 8 nhanh với ạ
Lời giải:
Có vẻ đề thiếu dữ kiện độ dài $AC$.
Bạn chỉ cần nhớ công thức:
\(\cos \widehat{BAC}=\cos (\overrightarrow{AB}, \overrightarrow{AC})=\frac{\overrightarrow{AB}.\overrightarrow{AC}}{|\overrightarrow{AB}|.|\overrightarrow{AC}|}=\cos 120=\frac{-1}{2}\)
\(\Rightarrow \overrightarrow{AB}.\overrightarrow{AC}=\frac{-1}{2}.|\overrightarrow{AB}|.|\overrightarrow{AC}|=\frac{-1}{2}.AB.AC=\frac{-1}{2}.10.AC\)
Đến đây bạn thay giá trị của $AC$ vào nữa để tính.
Viết chương trình đọc tệp Sothuc.text chứa ba số thực, các số cách nhau một dấu cách ghi tệp Tích.text tích của ba số đó? Giúp mình bài này với ạ
Giúp mik với ạ
Giải thích vì sao chọn căn cứ vapf nào chọn
Giúp mik với ạ
\(a=\lim\limits_{x\rightarrow-3}\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}=\lim\limits_{x\rightarrow-3}\dfrac{1}{x-3}=-\dfrac{1}{6}\)
\(b=\lim\limits_{x\rightarrow2}\dfrac{\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}=\lim\limits_{x\rightarrow2}\dfrac{x+3}{x+2}=\dfrac{5}{4}\)
\(c=\lim\limits_{x\rightarrow4}\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x+5\right)\left(x-4\right)}=\lim\limits_{x\rightarrow4}\dfrac{x+4}{x+5}=\dfrac{8}{9}\)
\(d=\lim\limits_{x\rightarrow2}\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2}\dfrac{x+2}{x-1}=4\)
\(e=\lim\limits_{x\rightarrow2}\dfrac{x+7-9}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{x-2}{\left(x-2\right)\left(\sqrt{x+7}+3\right)}=\lim\limits_{x\rightarrow2}\dfrac{1}{\sqrt{x+7}+3}=\dfrac{1}{6}\)
\(f=\lim\limits_{x\rightarrow1}\dfrac{x+3-4}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{x-1}{\left(x-1\right)\left(\sqrt{x+3}+2\right)}=\lim\limits_{x\rightarrow1}\dfrac{1}{\sqrt{x+3}+2}=\dfrac{1}{4}\)
\(h=\lim\limits_{x\rightarrow-3}\dfrac{x+7-4}{\left(x+3\right)\left(\sqrt{x+7}+2\right)}=\lim\limits_{x\rightarrow-3}\dfrac{x+3}{\left(x+3\right)\left(\sqrt{x+7}+2\right)}=\lim\limits_{x\rightarrow-3}\dfrac{1}{\sqrt{x+7}+2}=\dfrac{1}{4}\)
Bài 1:
a,
= limx->-3 \(\dfrac{x+3}{\left(x+3\right)\left(x-3\right)}\)
= limx->3 x-3
= -3 -3
= -6
b,
= limx->2 \(\dfrac{\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+2\right)}\)
= limx->2 \(\dfrac{x+3}{x+2}\)
= \(\dfrac{5}{4}\)
c,
= limx->4 \(\dfrac{\left(x-4\right)\left(x+4\right)}{\left(x-4\right)\left(x+5\right)}\)
= limx->4 \(\dfrac{\left(x+4\right)}{\left(x+5\right)}\)
= \(\dfrac{8}{9}\)
d,
= limx->2 \(\dfrac{\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x-1\right)}\)
= limx->2 \(\dfrac{\left(x+2\right)}{\left(x-1\right)}\)
= 4
Giúp em với ạ
Giúp mình giải chi tiết câu 3 với 4 nhanh với ạ
3.
\(\overrightarrow{AB}=\left(4;2\right)=2\left(2;1\right)\)
Do đó đường thẳng AB nhận \(\left(-1;2\right)\) là 1 vtpt
4.
\(\overrightarrow{AB}=\left(-a;b\right)\)
\(\Rightarrow\) Đường thẳng AB nhận (b;a) là 1 vtpt
Mụi người giúp em với ạ em sắp thi gồi
em cảm ơn trước ạ
Vẽ giúp mik với ạ