Giải bất phương trình
x^2>= 1
x^2 < 1
x^2+3x>=0
x^2+3x+3 >=0
Giải hệ phương trình
x^2+y^2=1
x^3+y^3=1
giải hệ phương trình
x^2+xy+y^2=1
x-y-xy=3
\(\left\{{}\begin{matrix}x^2+xy+y^2=1\\x-y-xy=3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2+3xy=1\\x-y-xy=3\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}x-y=u\\xy=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}u^2+3v=1\\u-v=3\end{matrix}\right.\)
\(\Rightarrow u^2+3\left(u-3\right)=1\)
\(\Leftrightarrow u^2+3u-10=0\Rightarrow\left[{}\begin{matrix}u=2\Rightarrow v=-1\\u=-5\Rightarrow v=-8\end{matrix}\right.\)
TH1: \(\left\{{}\begin{matrix}u=2\\v=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-y=2\\xy=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\xy=-1\end{matrix}\right.\)
\(\Rightarrow x\left(x-2\right)=-1\Leftrightarrow\left(x-1\right)^2=0\Rightarrow x=1\Rightarrow y=-1\)
TH2: \(\left\{{}\begin{matrix}u=-5\\v=-8\end{matrix}\right.\) \(\Rightarrow...\) bạn tự làm tương tự
Giải các bất phương trình sau: 1 x + 1 + 2 x + 3 < 3 x + 2
Giải phương trình: 3 x - 1 x - 2 + 2 x - 3 x - 1 = 1 x - 2 x - 3
Điều kiện xác định: x ≠ 1; x ≠ 2; x ≠ 3.
⇒ 3(x – 3) + 2(x – 2) = x – 1
⇔ 3x – 9 + 2x – 4 = x – 1
⇔ 3x + 2x – x = 9 + 4 – 1
⇔ 4x = 12
⇔ x = 3 (không thỏa mãn điều kiện xác định)
Vậy phương trình vô nghiệm.
Giải phương trình và bất phương trình sau:
a ) | 3 x | = x + 6 b ) x + 2 x - 2 - 1 x = 2 x x - 2 c ) ( x + 1 ) ( 2 x – 2 ) – 3 > – 5 x – ( 2 x + 1 ) ( 3 – x )
a) |3x| = x + 6 (1)
Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0
Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:
+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0
Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)
Do đó x = 3 là nghiệm của phương trình (1).
+ ) Phương trình -3x = x + 6 với điều kiện x < 0
Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)
Do đó x = -3/2 là nghiệm của phương trình (1).
Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}
ĐKXĐ: x ≠ 0, x ≠ 2
Quy đồng mẫu hai vễ của phương trình, ta được:
Vậy tập nghiệm của phương trình là S = {-1}
c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)
⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)
⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x
⇔ 10x ≥ 2 ⇔ x ≥ 1/5
Tập nghiệm: S = {x | x ≥ 1/5}
Câu 1 Mã: 78331
Giải bất phương trình 2x+1x+2≤12x+1x+2≤1
−2≤x≤−1−2≤x≤−1
−2≤x<1−2≤x<1
−2<x≤1−2<x≤1
Vô nghiệm
Câu 2 Mã: 78319
Bất phương trình (3x+1)(6-5x)(3x-7)<0, tập nghiệm của bất phương trình là:
S={x |−13<x<65−13<x<65}
S={x| x>73x>73 }
S={x| −13≤x≤65−13≤x≤65 hoặc x>73x>73 }
S={x| −13<x<65−13<x<65 hoặc x>73x>73 }
Câu 3 Mã: 78314
Tập nghiệm của bất phương trình tích (x+3)(x-7)
S={x\-3 < x hoặc x < 7}
S={x\-3 < x < 7}
S={x\-3 > x > 7}
S={-3;7}
Câu 4 Mã: 78328
Giải bất phương trình: 3xx−3>3x−1x−33xx−3>3x−1x−3
x>−3x>−3
x≥−3x≥−3
x>3x>3
x≥3x≥3
Câu 5 Mã: 78330
Giải bất phương trình: 1x+4≤1x−21x+4≤1x−2
x≥2x≥2
x≤−4x≤−4
x≥2x≥2 hoặc x≤−4x≤−4
x≥2x≥2 vàx≤−4x≤−4
Câu 6 Mã: 78316
Bất phương trình (2x-3)(x22+1)≤0≤0. Tập nghiệm của bất phương trình là:
S={x\x≤32≤32}
S={x\x≥32≥32}
S={x\x<32<32}
Đáp án khác
Câu 7 Mã: 78332
Số nghiệm nguyên thỏa mãn bất phương trình (x+5)(7−2x)>0(x+5)(7−2x)>0
8
7
9
10
Câu 8 Mã: 78321
Tìm x sao cho (x-2)(x-5)>0
x>5 và x<2
x>2
x>5 hoặc x<2
x>5
Câu 9 Mã: 78327
Có bao nhiêu giá trị x nguyên thỏa mãn bất phương trình: x−3x+5+x+5x−3<2x−3x+5+x+5x−3<2
4
5
3
6
Câu 10 Mã: 78315
Cho bất phương trình -2x22+11x-15>0. Giá trị x nguyên thỏa mãn bất phương trình là:
x=3
x=2
x=-2
không có giá trị x nào thỏa mãn
Câu 11 Mã: 78318
Cho bất phương trình: (2x+3)(x+1)(3x+5)≥≥ 0, tập nghiệm của bất phương trình là:
S={x | −53≤x≤−32−53≤x≤−32}
S={x | x≥−1x≥−1}
S={x| −53≤x≤−32−53≤x≤−32 hoặc x≥−1x≥−1}
S={x| −53<x<−32−53<x<−32 hoặc x>−1x>−1}
Câu 12 Mã: 78322
Tìm x sao cho x+2x−5<0x+2x−5<0
−2<x<4−2<x<4
−2<x<5−2<x<5
x<5x<5
x>−2x>−2
Câu 13 Mã: 78326
Giải bất phương trình: 4x+32x+1<24x+32x+1<2
x=−12x=−12
x≠−12x≠−12
x>−12x>−12
x<−12x<−12
Câu 14 Mã: 78313
Tập nghiệm của bất phương trình (x-1)(x+2)>0 là:
S={x/x<1 hoặc x>-2}
S={x/x<-2 hoặc x>1}
S={x/x>1 hoặc x<-2}
S={x/x>-2 hoặc x<1}
Câu 15 Mã: 78320
Bất phương trình (2x+1)(x2−4)>0(2x+1)(x2−4)>0 có tập nghiệm là:
S={x| -2 < x < −12−12 hoặc x>2}
S={x | -2 < x < −12−12 hoặc x≥≥ 2}
S={x | -2≤≤ x < −12−12 hoặc x>2}
S={x | -2 < x < −12−12 hoặc x=2}
Câu 16 Mã: 78329
Giải bất phương trình sau: 3x−4x+2≥03x−4x+2≥0
2<x<122<x<12
−12≤x≤−2−12≤x≤−2
x≤−2x≤−2
2≤x≤122≤x≤12
Câu 17 Mã: 78317
Cho bất phương trình:x2−4x+4≤0x2−4x+4≤0 , tập nghiệm của bất phương trình là:
S={x\x≤≤ 2}
S={2}
S={x\x< 2}
Đáp án khác
Câu 18 Mã: 78325
Tìm nghiệm nguyên dương của bất phương trình:
x2−2x−4(x+1)(x−3)>1x2−2x−4(x+1)(x−3)>1 (1)
x∈{1}x∈{1}
x∈{2}x∈{2}
x∈{1;2}x∈{1;2}
Vô nghiệm
Câu 19 Mã: 78324
Giải bất phương trình: (x−4)(9−x)≥0(x−4)(9−x)≥0
x≥4x≥4
x<9x<9
4≤x≤94≤x≤9
Vô nghiệm
Câu 20 Mã: 78323
Bất phương trình x2−2x+1<9x2−2x+1<9
−2<x<4−2<x<4
−2≤x<4−2≤x<4
−2<x<6−2<x<6
−2<x≤6
Giải các phương trình sau:
a) 1 x + 2 − 1 x − 2 = 3 x − 12 x 2 − 4 ;
b) − x 2 + 12 x + 4 x 2 + 3 x − 4 = 12 x + 4 + 12 3 x − 3 ;
c) 1 x − 1 + 2 x 2 − 5 x 3 − 1 = 4 x 2 + x + 1
Giải phương trình
a ) 2 x + 3 x - 4 = 2 x - 1 x + 2 - 27
b ) x 2 - 4 - x + 5 2 - x = 0
c ) x + 2 x - 2 - x - 2 x + 2 = 4 x 2 - 4
d ) x + 1 x - 1 - x + 2 x + 3 + 4 x 2 + 2 x - 3 = 0
a) 2(x + 3)(x – 4) = (2x – 1)(x + 2) – 27
⇔ 2(x2 – 4x + 3x – 12) = 2x2 + 4x – x – 2 – 27
⇔ 2x2 – 2x – 24 = 2x2 + 3x – 29
⇔ -2x – 3x = 24 – 29
⇔ - 5x = - 5 ⇔ x = -5/-5 ⇔ x = 1
Tập nghiệm của phương trình : S = {1}
b) x2 – 4 – (x + 5)(2 – x) = 0
⇔ x2 – 4 + (x + 5)(x – 2) = 0 ⇔ (x – 2)(x + 2 + x + 5) = 0
⇔ (x – 2)(2x + 7) = 0 ⇔ x – 2 = 0 hoặc 2x + 7 = 0
⇔ x = 2 hoặc x = -7/2
Tập nghiệm của phương trình: S = {2; -7/2 }
c) ĐKXĐ : x – 2 ≠ 0 và x + 2 ≠ 0 (khi đó : x2 – 4 = (x – 2)(x + 2) ≠ 0)
⇔ x ≠ 2 và x ≠ -2
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 4x + 4 – x2 + 4x – 4 = 4
⇔ 8x = 4 ⇔ x = 1/2( thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = {1/2}
d) ĐKXĐ : x – 1 ≠ 0 và x + 3 ≠ 0 (khi đó : x2 + 2x – 3 = (x – 1)(x + 3) ≠ 0)
⇔ x ≠ 1 và x ≠ -3
Quy đồng mẫu thức hai vế :
Khử mẫu, ta được : x2 + 3x + x + 3 – x2 + x – 2x + 2 + 4 = 0
⇔ 3x = -9 ⇔ x = -3 (không thỏa mãn ĐKXĐ)
Tập nghiệm của phương trình : S = ∅
\(2\left(x+3\right)\left(x-4\right)=\left(2x-1\right)\left(x+2\right)-27\)
\(< =>2\left(x^2-x-12\right)=2x^2+3x-2-27\)
\(< =>2x^2-2x-24=2x^2+3x-2-27\)
\(< =>5x=-24+29=5\)
\(< =>x=\frac{5}{5}=1\)
\(x^2-4-\left(x+5\right)\left(2-x\right)=0\)
\(< =>\left(x-2\right)\left(x+2\right)+\left(x+5\right)\left(x-2\right)=0\)
\(< =>\left(x-2\right)\left(x+2+x+5\right)=0\)
\(< =>\left(x-2\right)\left(2x+7\right)=0\)
\(< =>\orbr{\begin{cases}x-2=0\\2x+7=0\end{cases}}< =>\orbr{\begin{cases}x=2\\x=-\frac{7}{2}\end{cases}}\)
Giải các phương trình sau:
a) x − 2 x + x x + 2 = 2 ;
b) 2 x + 1 − 1 x − 2 = 3 x − 11 x + 1 x − 2 ;
c) 5 + 96 x 2 − 16 = 2 x − 1 x + 4 + 3 x − 1 x − 4 ;
d) 2 x + 2 − 2 x 2 + 16 x 3 + 8 = 5 x 2 − 2 x + 4 .