tim gtnn
A =4x^2+12x+2020
Tim GTNN cua bieu thuc A= 4x^2 + 12x + 8
Ta có: \(A=4x^2+12x+9-1\)
<=> \(A=\left(2x+3\right)^2-1\)
<=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)
<=> \(A=\left(2x+2\right)\left(2x+4\right)\)
<=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)
Vậy Amin = 8 khi x=0
trần gia bảo bái phục bái phục!
Lời giải
Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)
Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)
\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)
\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))
Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2
Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2
tim GTNN ho mk vs
A = 4x2 - y2 - 12x + 10y + 20152016
tim GTNN ho mk vs
A = 4x2 - y2 - 12x + 10y + 20152016
voi moi a>2020. tim gtnn cua a=a+1/a-2020
\(a=\dfrac{a+1}{a-2020}\)
\(=\dfrac{a-2020}{a-2020}+\dfrac{2021}{a-2020}\)
\(=1+\dfrac{2021}{a-2020}\) Vì a>2020
⇒\(1+\dfrac{2021}{a-2020}\text{≥}2\)
Min a=2 ⇔\(\dfrac{2021}{a-2020}=1\)
⇔\(a-2020=2021\)
⇔\(a=4041\)
tìm gtnn của biểu thức
A= căn (4x^2 -4x+1)+căn (4x^2-12x+9)
=2x-1+2x-3=4x-4=x^2-x^2+4x-4=x^2-(x^2-4x+4)=x^2-(x-2)^2 vay gtnn la x^2
Tìm GTNN
\(\sqrt{4X^2-4X+1}+\sqrt{4X^2-12X+9}\)
tìm gtnn
\(\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
\(=\sqrt{\left(2x-1\right)^2}+\sqrt{\left(2x-3\right)^2}=\left|2x-1\right|+\left|2x-3\right|=\left|2x-1\right|+\left|3-2x\right|\ge\left|2x-1+3-2x\right|=2\)
\(\Rightarrow A\ge2\)
Dấu "=" xảy ra khi \(\left(2x-1\right)\left(3-2x\right)\ge0\)
\(\Leftrightarrow\dfrac{1}{2}\le x\le\dfrac{3}{2}\)
11/ 4x2 - 4x - 5
12/ 4x2 + 12x + 10x
13/ 4x2 - 12x - 5
14/ 9x2 + 12x + 8
tìm GTNN .cần gấp
\(4x^2-4x-5=4x^2-4x+1-6=\left(2x-1\right)^2-6\ge-6\)
\(Min=-6\Leftrightarrow x=\dfrac{1}{2}\)
\(4x^2+12x+10=4\left(x^2+3x+\dfrac{9}{4}\right)+1=4\left(x+\dfrac{3}{2}\right)^2+1\ge1\)
\(Min=1\Leftrightarrow x=-\dfrac{3}{2}\)
\(4x^2-12x-5=4\left(x^2-3x+\dfrac{9}{4}\right)-14=4\left(x-\dfrac{3}{2}\right)^2-14\ge-14\)
\(Min=-14\Leftrightarrow x=\dfrac{3}{2}\)
\(9x^2+12x+8=\left(9x^2+12x+4\right)+4=\left(3x+2\right)^2+4\ge4\)
\(Min=4\Leftrightarrow x=-\dfrac{2}{3}\)
Tìm GTNN:
\(A=\sqrt{4x^2-4x+1}+\sqrt{4x^2-12x+9}\)
Tìm gtnn
A= 4x2 -12x+1
A=\(4x^2-12x+1\)
=\(\left(2x\right)^2-2.2x.3+3^2-3^2+1\)
=\(\left(2x-3\right)^2-8>=-8\)
min A=-8 dấu "=" xảy ra<=> 2x-3=0<=> x=3/2
\(A=4x^2-12x+1\)
=>\(A=\left(2x\right)^2-2.2x.3+9-8\)
=>\(A=\left(2x-3\right)^2-8\)
Vì \(\left(2x-3\right)^2\ge0\Rightarrow\left(2x-3\right)^2-8\ge-8\)
A đạt giá trị nhỏ nhất <=> A=(2x-3)2-8=-8
<=>(2x-3)2=0
<=>2x-3=0
<=>2x=3
<=>x=\(\frac{3}{2}\)
Vậy A đạt giá trị nhỏ nhất là -8 khi \(x=\frac{3}{2}\)
Tìm GTNN: \(A=\sqrt{4x^2-4x+28}+\sqrt{4x^2-12x+9}\)