Tìm các GT nguyên của x để các phân tử sau nhận GT nguyên
x + 3 / x - 1
2x + 5 / x - 2
Cho biểu thức : \(A=\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}\) ( với x khác 0 )
a> rút gọn A
b> tìm các giá trị nguyên của x để A nhận gt nguyên
a) A = \(\sqrt{\frac{\left(x^2-3\right)^2+12x^2}{x^2}}+\sqrt{\left(x+2\right)^2-8x}=\sqrt{\frac{\left(x^2+3\right)^2}{x^2}}+\sqrt{\left(x-2\right)^2}\)
\(=\frac{x^2+3}{\left|x\right|}+\left|x-2\right|=\left|x\right|+\frac{3}{\left|x\right|}+ \left|x-2\right|\)
b) A nhận gt nguyên khi |x| thuộc Ư(3) (các ước dương)
=> |x| thuộc {1;3} => x thuộc {-3;-1;1;3}
Mik không biết nhưng bạn click mik nhé .
Tìm các giá trị nguyên của biến để các phân thức sau nhận gt nguyên :
\(\frac{6}{x-3}\)
để x có giá trị nguyên thì 6/(x-3) phải có giá trị nguyên
=> 6 chia hết cho (x-3)
=> (x-3) thuộc ước của 6
ta có bảng sau
x-3 | 1 | -1 | 2 | -2 | 3 | -3 | 6 | -6 |
x | 4 | 2 | 5 | 1 | 6 | 0 | 9 | -3 |
vậy x thuộc các kết quả trên thì biểu thức mang giá trị nguyên
Cho A = (x + 3√x)/(x - 25) + 1/(√x + 5) và B = (√x + 2)/(√x - 5) với x > = 0, x # 25
a) Rút gọn biểu thức A. Tìm x để P = A/B = 4/7
b) Tìm các giá trị x nguyên để P nhận giá trị nguyên
a) \(ĐKXĐ:\hept{\begin{cases}x\ge0\\x\ne25\end{cases}}\)
\(A=\frac{x+3\sqrt{x}}{x-25}+\frac{1}{\sqrt{x}+5}\)
\(=\frac{x+3\sqrt{x}+\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{x+4\sqrt{x}-5}{\left(\sqrt{x}+5\right)\left(\sqrt{x}-5\right)}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}-5}\)
\(\Rightarrow P=\frac{\sqrt{x}-1}{\sqrt{x}-5}:\frac{\sqrt{x}+2}{\sqrt{x}-5}=\frac{\sqrt{x}-1}{\sqrt{x}+2}\)
b) Để P nguyên
\(\Leftrightarrow\sqrt{x}-1⋮\sqrt{x}+2\)
\(\Leftrightarrow3⋮\sqrt{x}+2\)
\(\Leftrightarrow\sqrt{x}+2\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{-3;-1;-5;1\right\}\)
Mà \(\sqrt{x}\ge0,\forall x\)
\(\Leftrightarrow\sqrt{x}=1\)
\(\Leftrightarrow x=1\)
Vậy để P nguyên \(\Leftrightarrow x=1\)
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Tìm các số nguyên x để các phân thức sau nhận giá trị nguyên:
a. 5x+11 (tử số) / 2x+3 (mẫu số)
b. 5x-4 (tử số) / 3x-1 (mẫu số)
c. 5x/3x+2
d. 7x+7/4x+3
e. 2x^2-x+2/x^2-x+2
Không biết mẫu số và x như thế nào? Bạn xem lại
1.cho A = tử 3n-5
mẫu n+4
tìm n thuộc Z để A có giá trị nguyên
2.tìm n thuộc Z để các phÂN SỐ SAU có các phân số có giá trị nguyên
-12/n;15/n-2;8/n+1
3.tìm x thuộc Z , biết:
a,x/7=9/y và x>y
b, -2/x =y/5 và x <0<y
P= (6/x^2-9-5/3-x+1/x+3):2x-1/x^2-3x
a, Chứng minh P=6x/2x-1
b, Tính gt bthuc P khi P=1/3
c, Tìm những gt nguyên của x để bthuc P nhận giá trị nguyên
tìm các giá trị nguyên của x để P=x2/x-1 nhận giá trị nguyên
tìm GTNN của P=x2/x-1 khi x>1
đề bài ĐKXĐ như nào bạn tự xét gtri thỏa mãn nhé
\(P=\frac{x^2}{x-1}=\frac{x^2-x+x-1+1}{x-1}=\frac{x\left(x-1\right)+\left(x-1\right)+1}{x-1}=x+1+\frac{1}{x-1}\)
Vì x nguyên nên x + 1 nguyên
Để P nguyên thì 1/x-1 nguyên ( đến đây quá dễ rồi:)) )
Như trên ta có : \(P=x+1+\frac{1}{x-1}=\left[\left(x-1\right)+\frac{1}{x-1}\right]+2\)
Vì x > 1, áp dụng bất đẳng thức AM-GM ta có :
\(P\ge2\sqrt{\left(x-1\right)\cdot\frac{1}{x-1}}+2=4\). Đẳng thức xảy ra <=> x = 2
Vậy GTNN của P = 4 <=> x=2
B1: Tìm cặp số tự nhiên (x,y) thỏa mãn x(y-1) = 5y -12
B2: Cho phân số A= x+1/2x+1 : 1/3 - x/2x+1
1/ Tìm tất cả các số nguyên x để A nhận GT là số nguyên
2/Tìm tất cả các số nguyên x để A đạt GTLN
CÁC BẠN GIẢI GIÚP MIK KÈM LỜI GIẢI NHA...!!!