Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Âu Minh Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 4 2023 lúc 17:38

loading...  loading...  loading...  

Hoàng Nam
Xem chi tiết
Lấp La Lấp Lánh
14 tháng 9 2021 lúc 13:56

a) \(4x+9=0\Leftrightarrow4x=-9\Leftrightarrow x=-\dfrac{9}{4}\)

b) \(-5x+6=0\Leftrightarrow5x=6\Leftrightarrow x=\dfrac{6}{5}\)

c) \(x^2-1=0\Leftrightarrow\left(x-1\right)\left(x+1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

d) \(x^2-9=0\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)

e) \(x^2-x=0\Leftrightarrow x\left(x-1\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

f) \(x^2-2x=0\Leftrightarrow x\left(x-2\right)=0\Leftrightarrow\)\(\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

g) \(\left(x-4\right)\left(x^2+1\right)=0\Leftrightarrow x-4=0\Leftrightarrow x=4\)( do \(x^2+1\ge1>0\))

h) \(3x^2-4x=0\Leftrightarrow x\left(3x-4\right)=0\Leftrightarrow\)\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{3}\end{matrix}\right.\)

i) \(x^2+9=0\Leftrightarrow x^2=-9\)( vô lý do \(x^2\ge0>-9\))

Vậy \(x\in\left\{\varnothing\right\}\)

Phan thị phương lan
Xem chi tiết
Nguyễn Lê Phước Thịnh
19 tháng 6 2023 lúc 13:20

=2x^3-2x^2-5x-10-2x^2+4x+x^2(2x-3)-x(x+1)-3x+2

=2x^3-4x^2-4x-8+2x^3-6x^2-x^2+x

=4x^3-11x^2-3x-8

Lê Đức Hoàng
Xem chi tiết
⭐Hannie⭐
16 tháng 3 2023 lúc 22:32

\(\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x^2+x}\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{x+1}=\dfrac{2x-1}{x\left(x+1\right)}\)

ĐKXĐ : \(\left\{{}\begin{matrix}x\ne0\\x+1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne0\\x\ne-1\end{matrix}\right.\)

Ta có : `(x-1)/x -1/(x+1) =(2x-1)/(x(x+1))`

\(\Leftrightarrow\dfrac{\left(x-1\right)\left(x+1\right)}{x\left(x+1\right)}-\dfrac{x}{x\left(x+1\right)}=\dfrac{2x-1}{x\left(x+1\right)}\)

`=> x^2 +x -x-1 -x-2x+1=0`

`<=> x^2 -3x =0`

`<=> x(x-3)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(ktm\right)\\x=3\end{matrix}\right.\)

__

`(x+2)(5-3x)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\5-3x=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\3x=5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{5}{3}\end{matrix}\right.\)

__

\(\dfrac{5\left(1-2x\right)}{3}+\dfrac{x}{2}=\dfrac{3\left(x-5\right)}{4}-2\)

\(\Leftrightarrow\dfrac{20\left(1-2x\right)}{12}+\dfrac{6x}{12}=\dfrac{9\left(x-5\right)}{12}-\dfrac{24}{12}\)

`<=> 2x- 40x + 6x = 9x - 45 -24`

`<=>  2x- 40x + 6x-9x + 45 +24=0`

`<=>-41x+69=0`

`<=>-41x=-69`

`<=> x=69/41`

⭐Hannie⭐
16 tháng 3 2023 lúc 22:02

Cậu tách 2 câu 1 lượt mn trl nhanh hơn đó ạ

Nguyễn Lê Phước Thịnh
16 tháng 3 2023 lúc 22:03

a:=>x^2-1-x=2x-1

=>x^2-x-1=2x-1

=>x^2-3x=0

=>x=0(loại) hoặc x=3(nhận)

b:=>x+2=0 hoặc 5-3x=0

=>x=-2 hoặc x=5/3

c:=>20(1-2x)+6x=9(x-5)-24

=>20-40x+6x=9x-45-24

=>-34x+20=9x-69

=>-43x=-89

=>x=89/43

d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3

=>2x^2+4x-19=-2x+7

=>2x^2+6x-26=0

=>x^2+3x-13=0

=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)

e: =>(2x-3)(2x-3-x-1)=0

=>(2x-3)(x-4)=0

=>x=4 hoặc x=3/2

Lê
Xem chi tiết
Nhung Lương Thị
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2022 lúc 13:44

1 b 3a 2c

︵✰Ah
6 tháng 1 2022 lúc 13:44

1.       x2 – 2xy + y2 – 4 =                                       a. 5(x+y).(x+1)

2.       3x(x – y) + x – y =                                        b. (x – y +2).(x – y - 2)

3.       5x2 + 5xy + 5x + 5y =                                  c. (x – y).(3x + 1)

                                                                              d. (x + y + 2).(x – y – 2)
1b 2c 3a

Bùi Thục Uyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 1 2022 lúc 9:34

Đề sai rồi bạn

Nguyễn Văn Gia Thịnh
16 tháng 12 2023 lúc 8:51

Đề hình như bị sai đk bạn

 

Xem chi tiết
Đinh Nguyễn Thiên Nhi
Xem chi tiết
Nguyễn Việt Lâm
28 tháng 4 2020 lúc 12:25

\(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0;\forall m\)

Phương trình đã cho luôn luôn có nghiệm

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+1\\x_1x_2=m\end{matrix}\right.\)

\(x_1^2+x_2^2+x_1x_2=1\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=1\)

\(\Leftrightarrow\left(m+1\right)^2-m=1\)

\(\Leftrightarrow m^2+m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

P/s: bài này \(a+b+c=0\) nên bạn có thể tính thẳng nghiệm ra và ráp vô

NT Quỳnh Anh
Xem chi tiết
Nguyễn Hoàng Minh
9 tháng 10 2021 lúc 10:07

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)