Cho tam giác ABC có M,N lần lượt là trung điểm của AB và AC. Chứng minh BC song song MN và BC=2MN
Cho tam giác ABC có M, N lần lượt là trung điểm của AB và AC. Chứng minh BC//MN và BC=2MN
xét tam giác abc có
am=mb(gt)
an=nc(gt)
suy ra mn là đường trung bình tam giác abc
suy ra mn//bc(tc đường trung bình tam giác)
và mn=1/2bc suy ra bc=2mn(tính chất đường trung bình tam giác)
cho tam giác abc vuông tại a . gọi m ,n lần lượt là trung điểm của ab ,bc .trên tia đối của mn lấy điểm d sao cho mn =nd.
a.chứng minh ;bm=cd
b. chứng minh ;góc abc=góc bcd,từ đosuy ra cd vuông góc ac
c. chứng minh; ac=2mn và md song song ac
cho tam giác ABC . trên tia dối của tia AB,AC lần lượt lấy các điểm D và E sao cho AD=AE và AE=AC . chứng minh DE song song BC. gọi M,N lần lượt là trung điểm của BC và DE . chứng minh A là trung điểm của MN
Cho tam giác ABC gọi M, N, P lần lượt là trung điểm của ba cạnh AB; AC và BC. Gọi I là giao điểm của AP và MN
a) Chứng minh MN song song BC
b) Chứng minh IA = IP
a) Xét tam giác ABC có: M là trung điểm của AB; N là trung điểm của AC
=> MN là đường trung bình của tam giác ABC ( tính chất đường trung bình )
=> MN // BC (đpcm)
b) Xét tam giác ABP có: MN // BC (cma) => MI // BP; M là trung điểm của AB
=> MI là đường trung bình của tam giác ABP ( tính chất đường trung bình )
=> I là trung điểm của AP => IA = IP (đpcm)
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và ABA) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNBB)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EFC) chứng minh MN song song với BC và EF ( mình chưa học tam giác cân
Bạn vé hình giống của ((Me)) nhé ..
a, AB=AC (gt)
\(\Rightarrow\frac{1}{2}AB=\frac{1}{2}AC\Rightarrow\hept{\begin{cases}AN=AM\\CM=BN\end{cases}}\)
Xét 2 \(\Delta ABM\)và \(\Delta CAN\)có:
góc A chung
AB=AC(gt)
\(AN=AM\)( cmt)
\(\Rightarrow\Delta AMB=\Delta ACN\left(c.g.c\right)\)
Xét 2 \(\Delta BMC\)Và \(\Delta CNB\)Có:
Cạnh BC chung
Góc \(ABC\)= góc \(ACB\)
\(BN=CM\)(Cmt)
\(\Rightarrow\Delta NBC=\Delta MCB\left(c.g.c\right)\)
Từ A Kẻ \(AK\perp BC\)
\(\Rightarrow\)AK là đường phân giác của \(\Delta ABC\)(Vì \(\Delta ABC\)Là tam giác cân )
\(\Rightarrow NAK=KAC\)
gọI O là gia điểm của hai đường chéo CF và BE
Xét 2 \(\Delta ANO\)Và \(\Delta AMO\)Có :
Góc \(NAO\)= Góc \(MAO\)(Cmt)
Cạnh \(AO\)Chung
\(AN=AM\)(Theo câu a)
\(\Rightarrow\Delta ANO=\Delta AMO\left(C.g.c\right)\)
\(\Rightarrow ANO=AMO\)(Cặp góc tương ứng )
Ta có : góc \(FNA+ANO=180^O\)(Cặp góc kề bù )
góc \(EMA+AMO=180^O\)(Cặp góc kề bù )
Mà góc \(ANO=AMO\)(Cmt)
\(\Rightarrow EMA=FNA\)
vÌ \(\Delta ABC\)Cân và N ,M lần lượt là trung điểm của AB,AC
\(\Rightarrow CN=BM\)
\(\Rightarrow NF=ME\)
xÉT 2 \(\Delta AFN\)VÀ \(\Delta AEM\)có :
góc \(ANF=EMA\)(Cmt)
\(AM=AN\)(Cmt)
\(FN=ME\)(Cmt)
\(\Rightarrow\DeltaÀFN=\Delta AEM\left(C.g.c\right)\)
\(\Rightarrow AF=AE\)(CẶP CẠNH TƯƠNG ỨNG )
\(\Rightarrow A\)Là trung điểm của EF
Lấy I là gia điểm của NM và AK
Vì \(\Delta ABC\)là tam giác cân
\(\Rightarrow AK\)\(\perp MN\)
Ta có : \(\hept{\begin{cases}MN\perp AK\\BC\perp AK\end{cases}}\Rightarrow MN\)// \(BC\)(Tính chất từ vuông góc đến song song)
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và AB
A) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNB
B)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EF
C) chứng minh MN song song với BC và EF
Cho tam giác ABC có AB =AC. Goi M;N lần lượt là trung điểm của AC và AB
A) chứng minh tam giác ABM = tam giác CAN và tam giác BMC= tam giác CNB
B)Lấy E;F sao cho M là trung điểm của BE , N LÀ trung điểm của CF Chứng minh A là trung điểm của EF
C) chứng minh MN song song với BC và EF
Cho tam giác ABC có D và E trên AB và AC sao cho BD = CE , trung điểm của DE và BC lần lượt là N và M , chứng minh rằng MN song song với tia phân giác trong của góc A
Gọi O là t/đ của BE. Gọi K ,H lần lượt là gđ của ON vs AC và MN vs AC
Xét tg BDE có N là t/đ của DE (gt) và O là t/đ của BE (cách vẽ)
=> ON là đg trung bình của tg BDE => ON=1/2.BD và ON//BD
Xét tg BCE có : M là t/đ cuae BC (gt) và O là t/đ của BE (cv)
=> OM là đg trung bình của tg BCE=> OM=1/2.EC và OM//BE
Ta có: ON=1/2.BD và OM=1/2.CE. Mà BD=CE (gt) nên OM=ON=> Tg OMN cân tại O=> ^OMN=^ONM
Do OM//EC => OM//AC (vì E thuộc AC)=> ^OMN=^NHK (so le trong). Mà ^ONM=^KNH(đ đ)=> ^NHK=^KNH(vi ^OMN=^ONM)
Ta có: \(\widehat{BAC}+\widehat{K_1}=180\) (vì ON//AB) => \(2\widehat{IAC}+\widehat{K_1}=180\) (vì AI là tia phân giác của ^BAC) (*)
\(\widehat{NHK}+\widehat{KNH}+\widehat{K_1}=180\) ( t/c tổng các góc trong tg) =>\(2\widehat{NHK}+\widehat{K_1}=180\)(vì ^NHK=^KNH) (**)
Từ (*),(**) => ^IAC=^NHK. Mà 2 gó này ở vị trí đồng vị => MH//AI hay MN//AI (đpcm)
cho tam giác ABC có M,N lần lượt là trung điểm của AB và AC. Chứng minh BC//MN và BC=2MN
mí bn giúp milk vs nha
cảm ơn nhìu
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của AC
Do đó:MN là đường trung bình
=>MN//BC và MN=BC/2