chứng minh :8^21 - 2^60 chia hết cho 14
chứng minh: 8^21 - 2^60 chia hết cho 14
Cho A= \(4+4^2+4^3+..........+4^{60}\)
a) Chứng minh A chia hết cho 4
b) Chứng minh A chia hết cho 5
c) Chứng minh A chia hết cho 21
a) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)=4.5+4^3.5+...+4^{59}.5=5\left(4+4^3+...+4^{59}\right)⋮5\)
c) \(A=4+4^2+4^3+...+4^{60}=4\left(1+4+4^2\right)+4^4\left(1+4+4^2\right)+...+4^{58}\left(1+4+4^2\right)=4.21+4^4.21+...+4^{58}.21=21\left(4+4^4+...+4^{58}\right)⋮21\)
\(A=4+4^2+4^3+.....+4^{60}\)
\(A=\left(1+4+4^2\right)+4^3.\left(1+4+4^2\right)+....4^{57}.\left(1+4+4^2\right)\)
\(A\)\(=21+4^3.21+...4^{57}.21\)
\(\Rightarrow A⋮4;21\)
ko chia hết cho 5
a:Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4+4^2+...+4^{59}\right)⋮4\)
b: Ta có: \(A=4+4^2+4^3+...+4^{60}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{59}\left(1+4\right)\)
\(=5\cdot\left(4+4^3+...+4^{59}\right)⋮5\)
Chứng minh rằng
a)14^14 - 1 chia hết cho 3
b)A=2+2^2+2^3+...+2^60 chia hết cho 15
Bài1 ; Chứng minh rằng
a) ( 10^33 + 8) chia hết cho 2 và 9
b) ( 10^100 + 14) chia hết cho 2 và 3
c) (21^299 + 9) chia hết cho 5
d) 4 x 10^n + 23 chia hết cho 9 với mọi n thuộc N
a)
10^33 có dạng 10...0
=> 10^33 + 8 có dạng 10...08 chia hết cho 2
=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9
b) c) d) tương tự
a) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )
( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )
b) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )
( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )
d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9
Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0
cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3
Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9
\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9
Câu b mk hông biết bạn tự làm nha
Hk tốt
1, Chứng minh rằng 2139+3921 chia hết cho 45
2, Cho A =2+22+23+.....+260
Chứng minh rằng Achia hết cho 3;7;15
Câu hỏi chứng minh 87 -218 chia hết cho 14 ở khúc 221 là tách ra đúng không ?
Đúng rồi bạn, nhưng mình phải tách thêm nữa
Ta có:
87 - 218
= (23)7 - 218
= 221 - 218
= 218.(23 - 1)
= 218.(8 - 1)
= 217.2.7
= 217.14 chia hết cho 14 (đpcm)
Chứng minh: a,11^6+11^3 chia hết cho 4
b, 7^15-7^14 chia hết cho 42
c, A= 2+2^2+2^3+....+2^60 chia hết cho 7
Chứng minh rằng:
a) ( 85 + 2111 ) chia hết cho 17. b) ( 692 - 69*5 ) chia hết cho 3. c) ( 87 - 218 ) chia hết cho 14.
a)
85=215
=> 211+215
= 211.1+211.24
= 211.(1+24)
= 211.17⋮17
Vậy ta có điều phải chứng minh !!!
b)
692−69.5
= 69.69−69.5
= 69.(69−5)
= 69.64⋮32( Vì 64 ⋮32 )
c)
87=221
=> 221−218
= 217.24−217.2
= 217.(24−2)
= 217.14⋮14
Bài 1: Chứng minh:
a) 1414 - 1 chia hết cho 3
b) A = 2 + 22 + 23 + ... + 260 chia hết cho 15