Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
baek huyn
Xem chi tiết
Lam Nèe
Xem chi tiết
Eira
Xem chi tiết
Nguyễn Thùy Linh 195d
12 tháng 11 2017 lúc 20:04

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Bùi Vương TP (Hacker Nin...
18 tháng 8 2018 lúc 19:50

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

Minh tú Trần
Xem chi tiết
Hòa Lương
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 12 2021 lúc 17:57

\(a,\) Vì M là trung điểm AC và BD nên ABCD là hình bình hành

\(b,\) Vì ABCD là hình bình hành nên \(AD//BC;AD=BC\)

Do đó \(AK//CH;AK=CH(\dfrac{1}{2}AD=\dfrac{1}{2}BC)\)

Do đó AHCK là hình bình hành

Mà \(\Delta ABC\) cân tại A nên trung tuyến AH cũng là đường cao

Do đó \(AH\bot HC\)

Vậy AHCK là hình chữ nhật

\(c,\) Vì AHCK là hình chữ nhật nên trung điểm M của AC cũng là trung điểm của HK

Vậy H,M,K thẳng hàng

\(d,\) Để AHCK là hình vuông thì \(HK\bot AC\) tại M

Mà H,K là trung điểm BC,AC nên HK là đtb \(\Delta ABC\)

Do đó \(HK//AB\)

Mà \(HK\bot AC\) nên \(AC\bot AB\)

Vậy nếu tam giác ABC vuông cân tại A thì AHCK là hình vuông

Quỳnh Anh
Xem chi tiết
Phạm Hiếu
27 tháng 10 2020 lúc 20:30

Các bạn học sinh KHÔNG ĐƯỢC đăng các câu hỏi không liên quan đến Toán, Tiếng Việt và Ngữ Văn hoặc Tiếng Anh, và KHÔNG ĐƯA các câu hỏi linh tinh gây nhiễu diễn đàn. OLM có thể áp dụng các biện pháp như trừ điểm, thậm chí khóa vĩnh viễn tài khoản của bạn nếu vi phạm nội quy nhiều lần.

Mỗi thành viên được gửi tối đa 5 câu hỏi trong 1 ngày

Khách vãng lai đã xóa
Nguyễn Quang Cương
Xem chi tiết
Nguyễn Đăng Khoa
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 1 2017 lúc 3:06

a) Xét tứ giác ADME có:

∠(DAE) = ∠(ADM) = ∠(AEM) = 90o

⇒ Tứ giác ADME là hình chữ nhật (có ba góc vuông).

b) Ta có ME // AB ( cùng vuông góc AC)

M là trung điểm của BC (gt)

⇒ E là trung điểm của AC.

Ta có E là trung điểm của AC (cmt)

Chứng minh tương tự ta có D là trung điểm của AB

Do đó DE là đường trung bình của ΔABC

⇒ DE // BC và DE = BC/2 hay DE // MC và DE = MC

⇒ Tứ giác CMDE là hình bình hành.

c) Ta có DE // HM (cmt) ⇒ MHDE là hình thang (1)

Lại có HE = AC/2 (tính chất đường trung tuyến của tam giác vuông AHC)

DM = AC/2 (DM là đường trung bình của ΔABC) ⇒ HE = DM (2)

Từ (1) và (2) ⇒ MHDE là hình thang cân.

d) Gọi I là giao điểm của AH và DE. Xét ΔAHB có D là trung điểm của AB, DI // BH (cmt) ⇒ I là trung điểm của AH

Xét ΔDIH và ΔKIA có

IH = IA

∠DIH = ∠AIK (đối đỉnh),

∠H1 = ∠A1(so le trong)

ΔDIH = ΔKIA (g.c.g)

⇒ ID = IK

Tứ giác ADHK có ID = IK, IA = IH (cmt) ⇒ DHK là hình bình hành

⇒ HK // DA mà DA ⊥ AC ⇒ HK ⊥ AC