Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thùy Chi
Xem chi tiết
Hà Phương
Xem chi tiết
Hà Phương
16 tháng 8 2016 lúc 23:03

\(-2\left(\sqrt{1+x}+\sqrt{1-x}\right)+7=\sqrt{\left(5-2x\right)\left(5+2x\right)}-2\sqrt{1-x^2}\)

ĐKCĐ: \(-1\le x\le1\)

\(\Leftrightarrow2\left(\sqrt{\left(1-x\right)}-1\right)\left(\sqrt{1+x}-1\right)+5-\sqrt{\left(5-2x\right)\left(5+2x\right)}=0\)

 \(\Leftrightarrow2x^2\left[\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\right]\)

Đặt: \(A=\frac{2}{5+\sqrt{\left(5-2x\right)\left(5+2x\right)}}-\frac{1}{\left(\sqrt{1-x}+1\right)\left(\sqrt{1+x}+1\right)}\)

Có: \(A\le\frac{2}{5+\sqrt{\left(5-2\right)\left(5-2\right)}}-\frac{1}{\sqrt{1-x^2}+1+\sqrt{1-x}+\sqrt{1+x}}< \frac{2}{5+3}-\frac{1}{1+1+2}=0\)

\(\Rightarrow x=0\) là nghiệm của pt

khocroigianroi

Hà Phương
16 tháng 8 2016 lúc 22:46

x=0. Ai giúp với gianroi
 

Hà Phương
16 tháng 8 2016 lúc 22:47

Mấy ché k giúp ak.

Quỳnh Nguyễn Thị Ngọc
Xem chi tiết
Đinh Đức Hùng
30 tháng 4 2018 lúc 17:29

\(ĐK:\frac{2}{3}\ge x\ge\frac{5}{2}\)

\(PT\Leftrightarrow\left(4x^2-4x+1\right)+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\sqrt{2+4x}-\left(2x+3\right)\sqrt{6-4x}+16=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\left(\sqrt{2+4x}-2\right)-\left(2x+3\right)\left(\sqrt{6-4x}-2\right)=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2+4x-4}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{6-4x-4}{\sqrt{6-4x}+2}=0\)

\(\Leftrightarrow\left(2x-1\right)^2+\left(2x-5\right)\frac{2\left(2x-1\right)}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2\left(2x-1\right)}{\sqrt{6-4x}+2}=0\)

\(\Leftrightarrow\left(2x-1\right)\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)=0\)

Theo ĐK ta chứng minh đc \(\left(2x-1+\left(2x-5\right)\frac{2}{\sqrt{2+4x}+2}+\left(2x+3\right)\frac{-2}{\sqrt{6-4x}+2}\right)>0\)

Do đó \(2x-1=0\Rightarrow x=\frac{1}{2}\left(TMĐKXĐ\right)\)

Le Minh Hieu
Xem chi tiết
Full Moon
Xem chi tiết
Full Moon
16 tháng 10 2018 lúc 19:51

ĐKXĐ: \(x>0\)

Ta có:

\(-\sqrt{x}-2\left(x-\frac{1}{x}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)

\(\Leftrightarrow-\sqrt{x}+\frac{1}{2x\sqrt{x}}=\frac{1}{2x^3}+2x-\frac{2}{x}\)

\(\frac{\Leftrightarrow1}{2x\sqrt{x}}-\sqrt{x}=2\left(x-\frac{1}{x}+\frac{1}{4x^3}\right)\)

Đặt : \(\frac{1}{2x\sqrt{x}}-\sqrt{x}=a\Rightarrow a^2=x-\frac{1}{x}+\frac{1}{4x^3}\)

Khi đó pt đã cho trở thành:

\(a=2a^2\Leftrightarrow\orbr{\begin{cases}a=0\\a=\frac{1}{2}\end{cases}}\)

+) a = 0\(\Rightarrow x=\frac{1}{\sqrt{2}}\)

Tương tự

Dark Illusion
Xem chi tiết
Xyz OLM
5 tháng 4 2023 lúc 22:03

ĐKXĐ : \(0\le x\le1\)

Đặt \(\sqrt{x}=a;\sqrt{1-x}=b\left(a;b\ge0\right)\)

Khi đó ta được a2 + b2 = 1 (1)

Lại có phương trình ban đầu trở thành 

\(\dfrac{2a^3}{a+b}+ab=1\) (2) 

Từ (1) ; (2) ta được \(\dfrac{2a^3}{a+b}+ab=a^2+b^2\)

\(\Leftrightarrow2a^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

\(\Leftrightarrow a^3=b^3\Leftrightarrow a=b\)

Khi đó \(\sqrt{x}=\sqrt{1-x}\Leftrightarrow x=1-x\Leftrightarrow x=\dfrac{1}{2}\left(tm\right)\)

Vậy tập nghiệm \(S=\left\{\dfrac{1}{2}\right\}\)

Lê Hà Phương
Xem chi tiết
Nguyen Duc Thang
26 tháng 8 2016 lúc 23:52

ĐK: \(\hept{\begin{cases}x^3+2x+4\ge0\\x^3-2x+4\ge0\end{cases}}\)

Đặt: \(\hept{\begin{cases}a=\sqrt{x^3+2x+4}\left(a\ge0\right)\\b=\sqrt{x^3-2x+4}\left(b\ge0\right)\end{cases}\Rightarrow\hept{\begin{cases}a^2=x^3+2x+4\\b^2=x^3-2x+4\end{cases}}\Rightarrow a^2-b^2=4x\Rightarrow x=\frac{a^2-b^2}{4}}\) 

\(pt\Leftrightarrow\left[1+\left(\frac{a^2-b^2}{4}\right)\right]a+\left[1-\left(\frac{a^2-b^2}{4}\right)\right]b=4\) 

\(\Leftrightarrow\left(4+a^2-b^2\right)a+\left(4-a^2+b^2\right)b=16\)

\(\Leftrightarrow a^3+b^3-ab^2-a^2b+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-ab+b^2\right)-ab\left(a+b\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a^2-2ab+b^2\right)+4\left(a+b\right)=16\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=16\) (1)

Từ pt, ta có: \(\left(1+x\right)a-\left(1-x\right)b=4\)

\(\Leftrightarrow a+b+\left(a-b\right)x=4\) (2)

Thay (1) và (2) vào, ta có:

\(\left(a+b\right)\left(a-b\right)^2+4\left(a+b\right)=4\left[a+b+\left(a-b\right)x\right]\)

\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2=4\left(a-b\right)x\)

\(\Leftrightarrow\left(a-b\right)\left[\left(a+b\right)\left(a-b\right)-4x\right]=0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2-4x\right)=0\Leftrightarrow\orbr{\begin{cases}a=b\\a^2-b^2=4x\end{cases}}\)

Với \(a=b\) , ta có: \(\sqrt{x^3+2x+4}=\sqrt{x^3-2x+4}\Leftrightarrow x=0\left(TM\right)\)

Với \(a^2-b^2=4x\) , ta có: \(x^3+2x+4-\left(x^3-2x+4\right)=4x\)

\(\Leftrightarrow4x=0\)

\(\Rightarrow x=0\)

Vậy:.........


 

Nguyen Duc Thang
26 tháng 8 2016 lúc 23:31

Lớp mấy đây, lớp 8 mà đây á

Phạm Hữu Nam chuyên Đại...
27 tháng 8 2016 lúc 9:28

tớ ra =0 cậu k cho mình nhé

Lê Hà Phương
Xem chi tiết
Nguyễn Tường Vy
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 3 2020 lúc 11:22

ĐKXĐ: \(x\ge-3\)

\(\Leftrightarrow\left(2x-1\right)x-\left(2x-1\right)\sqrt{x+3}-x^2+x+3=0\)

\(\Leftrightarrow\left(2x-1\right)\left(x-\sqrt{x+3}\right)-\left(x^2-x-3\right)=0\)

\(\Rightarrow\frac{\left(2x-1\right)\left(x^2-x-3\right)}{x+\sqrt{x+3}}-\left(x^2-x-3\right)=0\)

\(\Leftrightarrow\left(x^2-x-3\right)\left(\frac{2x-1}{x+\sqrt{x+3}}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\\frac{2x-1}{x+\sqrt{x+3}}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x^2-x-3=0\\x-1=\sqrt{x+3}\left(1\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\left(x-1\right)^2=x+3\end{matrix}\right.\)

Bạn tự giải nốt

Khách vãng lai đã xóa