Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nhím
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 8 2021 lúc 15:30

e: \(\left(a^2-1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)

\(=\left(a^3-1\right)\left(a^3+1\right)\)

\(=a^6-1\)

Nguyễn Lê Phước Thịnh
30 tháng 8 2021 lúc 0:13

b: Ta có: \(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)\)

\(=\left(1-x^3\right)\left(1+x^3\right)\)

\(=1-x^6\)

c: \(\left(a+1\right)\left(a+2\right)\left(a^2+4\right)\left(a-1\right)\left(a^2+1\right)\left(a-2\right)\)

\(=\left(a+1\right)\left(a-1\right)\left(a^2+1\right)\left(a+2\right)\left(a-2\right)\left(a^2+4\right)\)

\(=\left(a^2-1\right)\left(a^2+1\right)\left(a^2-4\right)\left(a^2+4\right)\)

\(=\left(a^4-1\right)\left(a^4-16\right)\)

\(=a^8-17a^4+16\)

d: \(\left(a^3+3\right)\left(a^6-3a^3+9\right)\)

\(=\left(a^3\right)^3+3^3\)

\(=a^9+27\)

Hoàng Ngọc Ý Thơ
Xem chi tiết
Le Nam Khanh
Xem chi tiết
Đặng công quý
29 tháng 11 2017 lúc 22:18

luỹ thừa lên rồi dùng hằng đẳng thức để tính

Hồ Đỗ Hải Tú
Xem chi tiết
Phạm Bảo Châu
Xem chi tiết
Nguyễn Hoàng Minh
25 tháng 9 2021 lúc 7:27

\(3,\\ a,=a^2+2a+1-a^2+2a-1-3a^2+3=-3a^2+4a+3\\ b,=\left(m^3-m+1-m^2+3\right)^2=\left(m^3-m^2-m+4\right)^2\\ 4,\\ a,\Leftrightarrow25x^2+10x+1-25x^2+9=3\\ \Leftrightarrow10x=-7\Leftrightarrow x=-\dfrac{7}{10}\\ b,\Leftrightarrow-9x^2+30x-25+9x^2+18x+9=30\\ \Leftrightarrow48x=46\Leftrightarrow x=\dfrac{23}{24}\\ c,\Leftrightarrow x^2+8x+16-x^2+1=16\\ \Leftrightarrow8x=-1\Leftrightarrow x=-\dfrac{1}{8}\)

Âu Dương Trúc Nhi
Xem chi tiết
buidatkhoi
Xem chi tiết
Nguyễn Huệ Lam
22 tháng 6 2017 lúc 16:24

Ta có

\(\frac{a+1}{a}=3\Leftrightarrow a+1=3a\Leftrightarrow2a=1\Leftrightarrow a=0,5.\)

Thay a=0,5 vào a^2+1/a^2 ta được

\(a^2+\frac{1}{a^2}=0,5^2+\frac{1}{0,5^2}=4,25\)

Làm tương tự với các câu còn lại

buidatkhoi
22 tháng 6 2017 lúc 16:25

cam on ban

Nguyễn Huệ Lam
22 tháng 6 2017 lúc 17:02

cam on cai gi, k đi

cấn mai anh
Xem chi tiết
Dung Vu
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 11 2021 lúc 9:19

Câu a bạn sửa lại đề 11→1

\(a,VT=\dfrac{a^2-2a+1}{\left(a-1\right)\left(a^2+1\right)}\cdot\dfrac{a^2+1}{a^2+a+1}\\ =\dfrac{\left(a-1\right)^2}{\left(a-1\right)\left(a^2+a+1\right)}=\dfrac{a-1}{a^2+a+1}=VP\)

\(b,=\left[\dfrac{\left(1-x\right)\left(x^2+x+1\right)}{1-x}-x\right]\cdot\dfrac{\left(1+x\right)\left(1-x^2\right)}{1+x}\\ =\dfrac{\left(x^2+1\right)\left(1+x\right)\left(1-x^2\right)}{1+x}=\left(x^2+1\right)\left(1-x^2\right)=VP\)

Minh Hoàng
Xem chi tiết
Akai Haruma
22 tháng 11 2021 lúc 21:23

Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn.