Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Anh Đức
Xem chi tiết
Hoàng Lê Bảo Ngọc
5 tháng 9 2016 lúc 18:13

Đặt \(A=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

Ta có : \(A=\left[\left(x+1\right)\left(x+7\right)\right].\left[\left(x+3\right)\left(x+5\right)\right]+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+11\) , suy ra \(A=\left(t-4\right)\left(t+4\right)+15=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(\Rightarrow A=\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Võ Đông Anh Tuấn
5 tháng 9 2016 lúc 18:13

f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

Rarah Venislan
Xem chi tiết
Trần Minh Đức
5 tháng 9 2016 lúc 17:20

  f(x) = (x+1)(x+3)(x+5)(x+7)+15

        = (x+1)(x+7)(x+3)(x+5)+15

        = (x2+7x+x+7)(x2+5x+3x+15)+15

        = (x2+8x+7)(x2+8x+15)+15

        Đặt X=x2+8x+11

   f(x) = (X-4)(X+4)+15

         = X2-16+15

         = X2-12

         = (X-1)(X+1)

=> f(x)= (x2+8x+11-1)(x2+8x+11+1)

     f(x) = (x2+8x+10)(x2+8x+12)

Đến đây là vẫn còn phân tích được nhưng không dùng phương pháp đặt biến phụ:

     f(x) = (x2+8x+10)(x2+8x+12)

           = (x2+8x+10)[(x2+2x)+(6x+12)]

           = (x2+8x+10)[x(x+2)+6(x+2)]

           = (x+2)(x+6)(x2+8x+10)

     

Lê Minh Trọng
5 tháng 9 2016 lúc 17:17

A=(x+1)(x+3)(x+5)(x+7)+15=[(x+1)(x+7)][(x+3)(x+5)]+15=(x2+8x+7)(x2+8X+15)+15

Đặt t=x2+8x+7=> A=t2+8t+15=(t+4)2-1=(t+5)(t+3)=(x2+8x+12)(X2+8x+10)=(x+2)(x+6)(x2+8x+10)

vậy...........................................

Nguyễn phạm bảo lâm
Xem chi tiết
Huyền Anh
Xem chi tiết
Trần Việt Linh
10 tháng 12 2016 lúc 21:39

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left[\left(x+1\right)\left(x+7\right)\right]\left[\left(x+3\right)\left(x+5\right)\right]+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\) \(\left(1\right)\)

Đặt \(x^2+8x+11=t\) , khi đó

\(\left(1\right)\Leftrightarrow\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15=t^2-1=\left(t-1\right)\left(t+1\right)=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\\ =\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Lightning Farron
10 tháng 12 2016 lúc 21:49

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(t=x^2+8x+7\) thì C trở thành:

\(t\left(t+8\right)+15=t^2+8t+15\)

\(t^2+3t+5t+15=t\left(t+3\right)+5\left(t+3\right)\)

\(=\left(t+5\right)\left(t+3\right)=\left(x^2+8x+7+5\right)\left(x^2+8x+7+3\right)\)

\(=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

Trần Đăng Nhất
29 tháng 7 2017 lúc 16:58

\(C=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(C=\left(x^2+8+7\right)\left(x^2+8x+15\right)+15\)

Đặt \(x^2+8x+7=k\)

\(\Rightarrow C=k\left(k+8\right)+15=k^2+8k+15\)

\(\Rightarrow C=k^2+3k+5k+15\)

\(\Rightarrow C=k\left(k+3\right)+5\left(k+3\right)\)

\(\Rightarrow C=\left(k+3\right)\left(k+5\right)\)

\(\Rightarrow C=\left(x^2+8x+7+6\right)\left(x^2+8x+7+3\right)\)

\(\Rightarrow C=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)

\(\Rightarrow C=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)

✆✘︵07XO
Xem chi tiết
Hiệp sĩ bống tối Tri...
10 tháng 9 2019 lúc 19:53

tìm có mà link https://h7.net/hoi-dap/toan-8/phan-h-da-thuc-x-1-x-3-x-5-x-7-15-thanh-nhan-tu-faq257547.html

tí mình gửi qua cho 

học tốt

Lê Tài Bảo Châu
10 tháng 9 2019 lúc 19:55

\(B=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)

\(=\left(x+1\right)\left(x+7\right)\left(x+3\right)\left(x+5\right)+15\)

\(=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)(1)

Đặt \(x^2+8x+11=t\)thay vào (1) ta được : 

\(\left(t-4\right)\left(t+4\right)+15\)

\(=t^2-16+15\)

\(=t^2-1\)

\(=\left(t-1\right)\left(t+1\right)\)Thay \(t=x^2+8x+11\)vào bt ta được:

\(\left(x^2+8x+11-1\right)\left(x^2+8x+11+1\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)

\(=\left(x^2+8x+10\right)\left(x^2+2x+6x+12\right)\)

\(=\left(x^2+8x+10\right)\left[x\left(x+2\right)+6\left(x+2\right)\right]\)

\(=\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)\)

Bài làm

B = ( x + 1 )( x + 3 )( x + 5 )( x + 7 ) + 15 

B = [ ( x + 1 ) ( x + 7 ) ] [ ( x + 3 ) ( x + 5 ) ] + 15

B = [ x2 + 7x + x + 7 ] [ x2 + 5x + 3x + 15 ] + 15

B = [ x2 + 8x + 7 ] [ x+ 8x + 15 ] + 15

Đặt [ x2 + 8x + 7 ] [ x+ 8x + 15 ] + 15 = k

=> B = k . ( k + 8 ) + 15

=> B = k2 + 8k + 15

=> B = k2 + 3k + 5k + 15

=> B = ( k2 + 5k ) + ( 3k + 15 )

=> B = [ k( k + 5 ) ] + [ 3( k + 5 ) ]

=> B = ( k + 5 ) ( k + 3 )

Hay B = ( x2 + 8x + 7 + 3 ) ( x2 + 8x + 7 + 5 )

=> B = ( x2 + 8x + 10 ) ( x2 + 8x + 12 )

=> B = ( x2 + 8x + 10 ) ( x2 + 2x + 6x + 12 )

=> B = ( x2 + 8x + 10 ) [ ( x2 + 6x ) + ( 2x + 12 )]

=> B = ( x2 + 8x + 10 ) [ x( x + 6 ) + 2( x + 6 ) ]

=> B = ( x2 + 8x + 10 ) ( x + 2 ) ( x + 6 )

# Học tốt #

Nguyễn Hoàn Như Ý
Xem chi tiết
Đinh Ngọc Minh
15 tháng 7 2016 lúc 20:34

a) xy+3x-7y-21

=x(y+3)-7(x+3)

=(x-7)(y+3)

b)2xy-15-6x-5y

=2x(y-3)-5(-3+y)

=(2x-5)(y-3)

c)2x^2y+2xy^2-2x-2y

=2x(xy-1)+2y(xy-1)

=(2x+2y)(xy-1)

x(x+3)-5x(x-5)-5(x+3)

=(x-5)(x+3)-5x(x-5)

=(x-5)(x+3-5x)

Đinh Ngọc Minh
15 tháng 7 2016 lúc 20:35

Câu cuối mình bị nhầm dòng cuối phải là (x-5)(x+3+x-5)=(x-5)(2x-2)nha bạn

Trần Việt Linh
15 tháng 7 2016 lúc 20:45

a) xy+3x-7y-21=(xy+3x)-(7y+21)= x(y+3)-7(y+3)=(y+3)(x-7)

b)2xy-15-6x+5y=(2xy-6x)+(5y-15)=2x(y-3)+5(y-3)=(y-3)(2x+5)

c)2x^2y+2xy^2-2x-2y=2xy(x+y)-2(x+y)=2(x+y)(xy-1)

d) x(x+3)-5x(x-5)-5(x+3)=[x(x+3)-5(x+3)]-5x(x-5)=(x+3)(x-5)-5x(x-5)=(x-5)(x+3-5x)=(x-5)(3-4x)

Bánh cá nướng :33
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 9 2021 lúc 7:50

\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)

hồ thị thu hoài
Xem chi tiết
ღ๖ۣۜLinh
28 tháng 10 2019 lúc 16:56

a)x^5+x+1

=x5-x2+x2+x+1

=x2(x3-1)+x2+x+1

=x2(x+1)(x2+x+1)+x2+x+1

=(x2+x+1)(x3+x2+1)

b)(x+1)(x+3)(x+5)(x+7)+15

=(x2+8x+7)(x2+8x+15)+15

Đặt x2+8x+7=t

=> t(t+8)+15=t2+8t+15

=(t+3)(t+5)

=(x2+8x+10)(x2+8x+12)

Khách vãng lai đã xóa
๖ۣۜmạnͥh2ͣkͫ5ツ
Xem chi tiết
Kuruishagi zero
1 tháng 12 2018 lúc 22:46

mở sách giải ra mà cop