Tìm GTLN và GTNN của 8x+3/4x^2+1
Tìm GTLN và GTNN của \(\frac{3-4x}{x^2+1}\)
Đặt:
\(\frac{3-4x}{x^2+1}=a\Rightarrow ax^2+4x+a-3=0\) Phương trình bậc hai ẩn x có nghiệm
\(\Delta'=a^2-3a-4\le0\Leftrightarrow-1\le a\le4\)
\(GTNN:-1\)
\(GTLN:4\)
Tìm GTLN và GTNN của
N=\(\frac{4x-8}{x^{2\:}-4x+8}\)
\(N=\frac{x^2-4x+8-x^2-8x-16}{x^2-4x+8}=1-\frac{\left(x+4\right)^2}{\left(x-2\right)^2+4}\le1\)
\(N_{max}=1\) khi \(x=-4\)
\(N=\frac{-x^2+4x-8+x^2}{x^2-4x+8}=-1+\frac{x^2}{\left(x-2\right)^2+4}\ge-1\)
\(N_{min}=-1\) khi \(x=0\)
Lời giải:
\(N=\frac{4(x-2)}{(x^2-4x+4)+4}=\frac{4(x-2)}{(x-2)^2+4}=\frac{4t}{t^2+4}\)
Có:
\(N+2=\frac{t^2+4t+4}{t^2+4}=\frac{(t+2)^2}{t^2+4}\geq 0, \forall t\in\mathbb{R}\)
\(\Rightarrow N\geq -2\) hay $N_{\min}=-2$ khi $t=-2\Leftrightarrow x=0$
\(N-2=-\frac{t^2-4t+4}{t^2+4}=\frac{-(t-2)^2}{t^2+4}\leq 0, \forall t\in\mathbb{R}\)
\(\Rightarrow N\leq 2\) hay $N_{\max}=2$ khi $t=2\Leftrightarrow x=4$
Vậy......
Tìm GTLN (hoặc GTNN) của:
a) A=3x^2+8x+54
b) B=-x^2+4x-9
\(A=3\left(x+\frac{4}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}\)
\(A_{min}=\frac{146}{3}\) khi \(x=-\frac{4}{3}\)
\(B=-\left(x-2\right)^2-5\le-5\)
\(B_{max}=-5\) khi \(x=2\)
A. Tìm GTLN của -5x^2-4x+1
B. Tìm GTNN của 2x^2+3x+1
Tìm GTLN của C=-5x^2-4x+1
Tìm GTNN của B=2x^2+3x+1
Cho x,y,z thuộc đoạn [0;1] và x+y+z=1 tìm GTLN của A=√(8x^2+1)+√(8z^2+1)+√(8y^2+1)
Cái này dễ :v, Mincopski thẳng cánh :v
\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)
\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)
\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)
\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)
\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)
Xảy ra khi \(x=y=z=\frac{1}{3}\)
Done !! :3
xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ
Cho x^2+y^2=2. Tìm GTLN và GTNN của bt A=x+y
Áp dụng bđt Bunhiacopxki
\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)=2.2=4\)
<=>\(-2\le x+y\le2\)
GTNN của x+y là -2 khi x=y=-1
GTLN của x+y là 2 khi x=y=1
tìm GTNN và GTLN của hàm số sau
\(\sqrt{x+3}+\sqrt{6_{ }-x}\)
ĐKXĐ: \(-3\le x\le6\)
Gọi A là tên hàm số trên
\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)
\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)
\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)
\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)
Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)
\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)
\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)
\(\Rightarrow A\ge3\)
Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)
Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)
\(\Rightarrow A\le3\sqrt{2}\)
Vậy maxA = \(3\sqrt{2}\)⇔\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)
Tìm GTLN và GTNN của biểu thức \(A=\frac{\sqrt{x-4}}{2x}\)
Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)
\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)
Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)
\(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)
\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)
Vậy MaxA=1/8 khi x=8
min trước nhé max mình đang nghĩ
ta có
ĐKXĐ \(x>=4\)
vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)
=> \(\frac{\sqrt{x-4}}{2x}>=0\)
dấu = xảy ra <=> x=4
min của bạn long sai rồi A>=0 mà
t acùng tìm max = cách khác nhé
ta có \(A=\frac{\sqrt{x-4}}{2x}=\frac{4.\sqrt{x-4}}{8x}=\frac{x-\left(x-4\right)+4\sqrt{x-4}-4}{8x}\)
\(=\frac{1}{8}-\frac{\left(\sqrt{x-4}-2\right)^2}{8x}\)
đến đây thì dễ rồi nhé A max=1/8<=> x=8