Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
KAl(SO4)2·12H2O
Xem chi tiết
KAl(SO4)2·12H2O
22 tháng 11 2017 lúc 22:39

Đặt: 

\(\frac{3-4x}{x^2+1}=a\Rightarrow ax^2+4x+a-3=0\) Phương trình bậc hai ẩn x có nghiệm

\(\Delta'=a^2-3a-4\le0\Leftrightarrow-1\le a\le4\)

\(GTNN:-1\)

\(GTLN:4\)

Phạm Bảo Ngọc
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 6 2020 lúc 14:13

\(N=\frac{x^2-4x+8-x^2-8x-16}{x^2-4x+8}=1-\frac{\left(x+4\right)^2}{\left(x-2\right)^2+4}\le1\)

\(N_{max}=1\) khi \(x=-4\)

\(N=\frac{-x^2+4x-8+x^2}{x^2-4x+8}=-1+\frac{x^2}{\left(x-2\right)^2+4}\ge-1\)

\(N_{min}=-1\) khi \(x=0\)

Akai Haruma
7 tháng 6 2020 lúc 14:21

Lời giải:
\(N=\frac{4(x-2)}{(x^2-4x+4)+4}=\frac{4(x-2)}{(x-2)^2+4}=\frac{4t}{t^2+4}\)

Có:

\(N+2=\frac{t^2+4t+4}{t^2+4}=\frac{(t+2)^2}{t^2+4}\geq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\geq -2\) hay $N_{\min}=-2$ khi $t=-2\Leftrightarrow x=0$

\(N-2=-\frac{t^2-4t+4}{t^2+4}=\frac{-(t-2)^2}{t^2+4}\leq 0, \forall t\in\mathbb{R}\)

\(\Rightarrow N\leq 2\) hay $N_{\max}=2$ khi $t=2\Leftrightarrow x=4$

Vậy......

Lê Huyền Trang
Xem chi tiết
Nguyễn Việt Lâm
12 tháng 10 2019 lúc 1:13

\(A=3\left(x+\frac{4}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}\)

\(A_{min}=\frac{146}{3}\) khi \(x=-\frac{4}{3}\)

\(B=-\left(x-2\right)^2-5\le-5\)

\(B_{max}=-5\) khi \(x=2\)

Karroy Yi
Xem chi tiết
Karroy Yi
Xem chi tiết
đăng thanh Trang12
Xem chi tiết
Thắng Nguyễn
8 tháng 7 2017 lúc 22:45

Cái này dễ :v, Mincopski thẳng cánh :v

\(A=\sqrt{8x^2+1}+\sqrt{8y^2+1}+\sqrt{8z^2+1}\)

\(=\sqrt{\left(\sqrt{8}x\right)^2+1}+\sqrt{\left(\sqrt{8}y\right)^2+1}+\sqrt{\left(\sqrt{8}z\right)^2+1}\)

\(\ge\sqrt{\left(\sqrt{8}x+\sqrt{8}y+\sqrt{8}z\right)^2+\left(1+1+1\right)^2}\)

\(\ge\sqrt{\left(\sqrt{8}\left(x+y+z\right)\right)^2+9}\)

\(\ge\sqrt{\sqrt{8}^2+9}=\sqrt{8+9}=17\)

Xảy ra khi \(x=y=z=\frac{1}{3}\)

Done !! :3

đăng thanh Trang12
9 tháng 7 2017 lúc 6:28

xem lai đi bạn ơi đây là timg GTLN chứ không phải GTNN bạn nhé. mà mình chưa thấy sử dụng x,y,z thuộc đoạn 0;1 nhỉ

vuong quynh giang
Xem chi tiết
Trà My
7 tháng 7 2017 lúc 17:47

Áp dụng bđt Bunhiacopxki

\(\left(x+y\right)^2\le\left(x^2+y^2\right)\left(1+1\right)=2.2=4\)

<=>\(-2\le x+y\le2\)

GTNN của x+y là -2 khi x=y=-1

GTLN của x+y là 2 khi x=y=1

vuong quynh giang
7 tháng 7 2017 lúc 19:28

thank you verry much

ngAn thu
Xem chi tiết
Nguyễn Việt Hoàng
11 tháng 2 2020 lúc 10:20

ĐKXĐ: \(-3\le x\le6\)

Gọi A là tên hàm số trên

\(A=\sqrt{x+3}+\sqrt{6-x}\ge\sqrt{x+3+6-x}=3\)

\(\Rightarrow A_{min}=3\) khi \(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)

\(A\le\sqrt{\left(1+1\right)\left(x+3\right)\left(6-x\right)}=3\sqrt{2}\)

\(\Rightarrow A_{max}=3\sqrt{2}\) khi \(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)

Khách vãng lai đã xóa
Phạm Minh Quang
11 tháng 2 2020 lúc 10:24

Đặt A = \(\sqrt{x+3}+\sqrt{6-x}\) ĐKXĐ: \(-3\le x\le6\)

\(A^2=x+3+6-x+2\sqrt{\left(x+3\right)\left(6-x\right)}\)

\(=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\ge9\)

\(\Rightarrow A\ge3\)

Vậy min A = 3 ⇔\(\left[{}\begin{matrix}x=-3\\x=6\end{matrix}\right.\)(thỏa mãn)

Mặt khác \(A^2=9+2\sqrt{\left(x+3\right)\left(6-x\right)}\le9+x+3+6-x=18\)

\(\Rightarrow A\le3\sqrt{2}\)

Vậy maxA = \(3\sqrt{2}\)\(x+3=6-x\Leftrightarrow x=\frac{3}{2}\)(thỏa mãn)

Khách vãng lai đã xóa
123654
Xem chi tiết
Trần Huỳnh Thanh Long
4 tháng 9 2017 lúc 21:15

Đặt \(\sqrt{x-4}=t\left(t\ge0\right)\Rightarrow x=t^2+4\)Khi đó \(A=\frac{t}{2t^2+8}\Rightarrow2At^2-t+8A=0\)

\(\Delta=1-64A^2\). Pt có nghiêm<=> \(\Delta\ge0\)\(\Leftrightarrow\)\(1-64A^2\ge0\)\(\Leftrightarrow\)\(A^2\le\frac{1}{64}\)\(\Leftrightarrow\)\(-\frac{1}{8}\le A\le\frac{1}{8}\)

Do đó \(MinA=\frac{-1}{8}\)khi \(t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(-\frac{1}{8}\right)^2}}{4.\left(-\frac{1}{8}\right)}=-2\)(loại)

          \(MaxA=\frac{1}{8}khi\\ t=\frac{-\left(-1\right)-\sqrt{\Delta}}{2.2A}=\frac{1-\sqrt{1-64.\left(\frac{1}{8}\right)^2}}{4.\frac{1}{8}}=2\)(thỏa)

\(\Rightarrow\sqrt{x-4}=2\Rightarrow x=8\)

Vậy MaxA=1/8 khi x=8

vũ tiền châu
4 tháng 9 2017 lúc 21:16

min trước nhé max mình đang nghĩ 

ta có 

ĐKXĐ \(x>=4\)

vì x>=4 => 2x>0 và \(\sqrt{x-4}>=0\)

=> \(\frac{\sqrt{x-4}}{2x}>=0\)

dấu = xảy ra <=> x=4

vũ tiền châu
4 tháng 9 2017 lúc 21:31

min của bạn long sai rồi A>=0 mà 

t acùng tìm max = cách khác nhé 

ta có \(A=\frac{\sqrt{x-4}}{2x}=\frac{4.\sqrt{x-4}}{8x}=\frac{x-\left(x-4\right)+4\sqrt{x-4}-4}{8x}\)

            \(=\frac{1}{8}-\frac{\left(\sqrt{x-4}-2\right)^2}{8x}\)

đến đây thì dễ rồi nhé A max=1/8<=> x=8