CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Đề sai, vì chắc chắn ở dãy trên ta có 2 thừa số 99 (xuất hiện ở 99! và 100!) cùng với số 100
Nguyên như vậy tích chúng là: 980100>247623, chưa kể còn nhiều thừa số nữa.
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Đề sai, vì chắc chắn ở dãy trên ta có 2 thừa số 99 (xuất hiện ở 99! và 100!) cùng với số 100
Nguyên như vậy tích chúng là: 980100>247623, chưa kể còn nhiều thừa số nữa.
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Và tính số chữ số 0 ở tận cùng của 0!.1!.2!...100!
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
Nguyễn Ngọc Quý lo giải toán đến nỗi ko nhớ tên Nguyễn Đình Dũng lun ak cảkaitovskudo
CMR: 0!.1!.2!.3!...100!<247623(0!=1)
thế thì bài này vớ vẩn không tính được!
tốt nhất các bn đừng cãi lộn nữa!==''