cho tam giác ABC, D là trung điểm của AC .Trên tia đối của tia BA lấy E sao cho BE = BA. Trên nửa mặt phẳng chứa C có bờ là AB vẽ BF // AC và BF = AC/2
a) Chứng minh EF = BD
b) Chứng minh F là TĐ của EC
Cho ΔABC. D là trung điểm của AC.Trên tia đối của tia BA lấy E saocho BE =BA. Trên nứa mặt hẳng chứa C có bờ là AB vẽ BF // AC và BF = \(\frac{AC}{2}\) . Chứng minh:
a) EF = BD b) F là trung điểm của EC
\(a,\)Xét \(\Delta ADB\)và \(\Delta BFE\)có :
\(AB=BE\left(gt\right)\)
\(\widehat{DAB}=\widehat{FBE}\)( hai góc đồng vị )
\(AD=BF\left(=\frac{1}{2}AC\right)\)
\(\Rightarrow\Delta ADB=\Delta BFE\left(c.g.c\right)\)
\(\Rightarrow EF=BD\)( hai cạnh tương ứng )
\(b,\)Trong \(\Delta AEC\)có \(AB=BE\left(gt\right)\)và \(AD=DC\left(gt\right)\)
\(\Rightarrow BD\)là đường trung bình của \(\Delta AEC\)
\(\Rightarrow BD=\frac{1}{2}EC\)
Mà \(BD=EF\Rightarrow EF=\frac{1}{2}EC\)
Hay F là trung điểm EC ( đpcm )
Cho ABC có Đ là Trung điểm của BC. Trên nửa mặt phẳng bờ BC không chứa điểm A, vẽ tia Bx//AC, Bx cắt AD ở E a, chứng minh tam giác ADC=tam giác EDB b, Trên tia đối của tia AC, lấy điểm F sao cho AF=AC. Gọi I là giao điểm của AB và EF. Chứng minh tam giác AIF= tam giác BIE.
a) Xét ΔADC và ΔEDB có
\(\widehat{ACD}=\widehat{EBD}\)(hai góc so le trong, AC//BE)
DC=DB(D là trung điểm của BC)
\(\widehat{ADC}=\widehat{EDB}\)(hai góc đối đỉnh)
Do đó: ΔADC=ΔEDB(g-c-g)
Cho tam giác ABC có góc A nhọn. Trên nửa mặt phẳng bờ AB không chứa điểm C. Vẽ tia Ax vuông góc với AC và lấy trên Ax một điểm E sao cho AE =AB. Trên nửa mặt phẳng bờ AC không chứa điểm B ,vẽ tia Ay vuông góc với AC và lấy trên đó điểm F sao cho AF= AC. Chứng minh BF=CE, BF vuông góc với CE.
Cho tam giác ABC có AB < AC, AD là tia phân giác BAC. Trên cạnh AC lấy điểm E sao cho AE = AB, chứng minh:
a) ABD = AED
b) Trên tia đối tia BA lấy điểm F sao cho BF = EC. Chứng minh: tam giác BDF = tam giác EDC
c) E, D, F thẳng hàng
d) AD là đường trung trực của BE
e) BE // FC
a, xét tam giác ABD và tam giác AED có : AD chung
^BAD = ^EAD do AD là pg của ^BAC (gt)
AB = AE (gt)
=> tam giác ABD = tam giác AED (c-g-c)
b, tam giác ABD = tam giác AED (câu a)
=> ^ABD = ^AED (đn)
^ABD + ^DBF = 180
^AED + ^DEC = 180
=> ^DBF = ^DEC
xét tam giác FBD và tam giác CED có : BF = EC (gt)
DB = DE do tam giác ABD = tam giác AED (câu a)
=> tam giác FBD = tam giác CED (c-g-c)
c, tam giác FBD = tam giác CED (câu b)
=> ^BDF = ^EDC (đn)
B;D;C thẳng hàng => ^BDE + ^EDC = 180
=> ^BDE + ^BDF = 180
=> E;D;F thẳng hàng
d, AB = AE (gt) => A thuộc đường trung trực của BE (tc)
BD = DE (câu b) => D thuộc đường trung trực của BE (Tc)
=> AD là đường trung trực của BE
e, DF = DC do tam giác BDF = tam giác EDC (Câu b)
=> tam giác DFC cân tại D (đn)
=> ^DCF = (180 - ^FDC) : 2 (tc)
DB = DE (câu b) => tam giác DEB cân tại D (đn) => ^EBD = (180 - ^BDE) : 2 (tc)
^FDC = ^BDE (đối đỉnh)
=> ^DCF = ^EBD mà 2 góc này slt
=> BE // CF
Cho ΔABC. D là trung điểm của AC.Trên tia đối của tia BA lấy E saocho BE =BA. Trên nứa mặt hẳng chứa C có bờ là AB vẽ BF // AC và BF = \(\frac{AC}{2}\) . Chứng minh:
a) EF = BD b) F là trung điểm của EC
Cho tam giác ABC và M là trung điểm của cạnh BC. Trên nửa mặt phẳng bờ AB không chứa điểm C ta vẽ đoạn thẳng AD vuông góc AB và AD=AB. Trên nửa mặt phẳng AC không chứa điểm B ta vẽ đoạn thẳng AE vuông góc AC và AE=AC. Trên tia AM lấy điểm F sao cho M là trung điểm của AF.
a) Chứng minh tam giác MAC = tam giác MFB. Từ đó chứng minh AC = BF
b) Chứng minh tam giác ADE = tam giác BEF.
c) Chứng minh AM vuông góc DE.
d) Từ A kẻ đường thẳng vuông góc với BC cắt BC tại H, cắt DE tại K. Chứng minh K là trung điểm của BE.
Cho tam giác ABC có ba góc nhọn, trung tuyến AM. Trên nửa mặt phẳng chứa điểm C bờ là đường thẳng AB vẽ đoạn thẳng AE vuông góc với AB và AE=AB. Trên nửa mặt phẳng chứa điểm B bờ là đường thẳng AC vẽ đoạn thẳng AD vuông góc với AC và AD=AC.
a) chứng minh BD=EC
b)trên tia đối của tia MA lấy điểm N sao cho MN=MA. chứng minh tam giác ADE= tam giác CAN.
c) gọi i là giao điểm của DE và AM. Chứng minh (AD^2+IE^2)/(DI^2+AE^2)=1
Có ai bít làm bài này ko?Làm cho mik vs nữa!!
trời ơi mai tui thi rồi làm ơn giải giùm tôi cái đi!! không cần bình luận đâu
mình giải được hết các bài toán mà mình đăng rồi
Các bạn ơi giúp mình với!!
Bài 1: Cho tam giác ABC, D là trung điểm của AC. E là trung điểm của AB. Trên tia đối của DB lấy N sao cho DN=DB.Trên tia đối của EC lấy M sao cho EM=EC. Chứng minh rằng A là trung điểm của MN
Bài 2: Cho tam giác ABC có A nhọn.Trên nửa mp bờ AB không chứa C. Vẽ Ã và trên tia đối lấy D sao cho AD=AB. Trên nửa mp bờ AC không chúa B, vẽ Ay và trên tia đó lấy E sao cho AE=AC
a) Chứng Minh BE=CD và BE vuông góc với CD
b)Các đường AC và ED có vương góc vs nhau không?
c)Các kết quả trên có đúng không nếu góc A là góc tù
Bài 5: Cho tam giác ABC có AB<AC. Kẻ AD là tia phân giác của góc BAC (D thuộc cạnh BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a) Chứng minh: góc ABD = góc AED
b) Trên tia đối của tia BA lấy điểm F sao cho BF= EC. Chứng minh ∆ BDF = ∆ EDC
c) Chứng minh ba điểm E, D, F thẳng hàng.
d) Chứng minh AD là đường trung trực của BE.
e) Chứng minh BE // FC
Nhờ mn ạ!