tìm số nguyên dương x, y biết 22-6(x-2021)2=y2
tìm số nguyên x,y biết 25-y2=8(x-2021)2
Tìm số nguyên dương x,y biết 25 - y^3 = 8( x - 2021 )^2
cho x,y là hai số nguyên dương biết x +y =2021. tìm min P=xy
có x+y=2021=>y=2021-x
=>x.y=x(2021-x)=2021x-\(x^2\)
=>P=2021x-\(x^2\)
=> -P=\(x^2-2021x\)\(=x^2-2.\dfrac{2021}{2}.x+\left(\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)=\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\)
lại có x,y nguyên dương=>x,y\(\ge\)1
có x+y=2021=>x,y\(\le\)2020
=>\(x\le2020\)
=>\(x-\dfrac{2021}{2}\le2020-\dfrac{2021}{2}\)
<=>\(\left(x-\dfrac{2021}{2}\right)^2\le\left(\dfrac{2019}{2}\right)^2\)
=>\(\left(x-\dfrac{2021}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2\le\)\(\left(\dfrac{2019}{2}\right)^2-\left(\dfrac{2021}{2}\right)^2=-2020\)
<=>\(-P\le-2020< =>P\ge2020\)
dấu = xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x=2020\\x=1\end{matrix}\right.\)
vậy MIN P=2020 khi x=2020 hoặc x=1
bổ sung đoạn cuối dấu với x=2020 thì y=1
với x=1 thì y =2020
bài 1: Tìm x,y,z thuộc Z : Biết x-y=9; y-z= -10;z+11
bài 2: Cho a là 1 số nguyên dương . Hỏi b là số nguyên dương hay số nguyên âm nếu:
a) ab là một số nguyên dương
b) ab là 1 số nguyên âm
bài 3: Tìm x thuộc Z biết:
a) x-14=3x+18
b)2(x-5)- 3(x-4)= -6+15(-3)
c)(x+7)(x-9)=0
d)I2x-5I-7=22
Tìm bộ ba số nguyên dương ( x ; y ; z ) thỏa mãn \(\frac{x+y\sqrt{2021}}{y+z\sqrt{2021}}\) là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên
Ta có : \(\frac{x+y\sqrt{2021}}{y+z\sqrt{2021}}=\frac{a}{b}\left(a,b\inℕ^∗;\left(a,b\right)=1\right)\)
<=>\(bx-ay=\left(az-by\right)\sqrt{2021}\)
<=>\(\hept{\begin{cases}nx-ay=0\\az-by=0\end{cases}}\)<=>\(\frac{x}{y}=\frac{y}{z}=\frac{a}{b}\)=> xz = y2
Lại có : x2 + y2 + z2 = ( x + z )2 - 2xz + y2 = ( x + z )2 - y2 = ( x + z - y ) ( x + z + y )
Vì x + y + z > 1 và x2 + y2 + z2 là số ntố => \(\hept{\begin{cases}x^2+y^2+z^2=x+y+z\\x-y+z=1\end{cases}}\)<=> x = y = z = 1 ( tm )
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
Bài 3 :
a) Tìm x biết: (x+2)2 +(x+8)(x+2)
b) Tính giá trị biểu thức : B= (x+y)(x2 – xy + y2) –y3, tại x =10, y = 2021
a) Tìm cặp số x,y nguyên dương thỏa mãn \(x^2+y^2\left(x-y+1\right)-\left(x-1\right)y=22\)
b) Tìm các cặp số x,y,z nguyên dương thỏa mãn \(\dfrac{xy+yz+zx}{x+y+z}=4\)
Chứng minh rằng không tồn tại các số nguyên dương \(x,y>2\) phân biệt sao cho:
\(x^{2021}+y!=y^{2021}+x!\)
a) Tìm x,y biết 12-2x\(^2\)+3y-x\(^2\)=0
b) Tìm số nguyên dương x,y sao cho 25-y\(^2\)=8.x-2021\(^2\)
dấu chấm là nhân