Giải phương trình đồng dư: 5x ≡ 21 (mod29)
Giải phương trình: |-5x| = 2x + 21.
Ta có: |- 5x| = - 5x khi -5x ≥ 0 hay x ≤ 0
| - 5x| = 5x khi – 5x < 0 hay x > 0
Vậy để giải phương trình đã cho ta quy về giải hai phương trình:
+) Phương trình: - 5x = 2x + 21 với điều kiện x ≥ 0
⇔ - 7x = 21 ⇔ x = - 3 ( thỏa mãn điều kiện x ≤ 0 )
+) Phương trình: 5x = 2x + 21 với điều kiện x> 0
⇔ 3x = 21
⇔ x = 7 (thỏa mãn điều kiện x > 0)
Vậy tập nghiệm của bất phương trình |-5x|= 2x + 21 là S = {-3; 7}.
Giải các hệ phương trình sau bằng phương pháp thế: 5 x - y = 5 3 - 1 2 3 x + 3 5 y = 21
Giúp mik vs mik cần gấp ạ Đề toán 8 - Ôn tập
Câu 1: Giải các phương trình sau:
a. 7x + 21 = 0
b. 3x – 2 = 2x – 3
c. 5x – 2x – 24 = 0
Câu 2: Giải các phương trình sau:
a. (2x + 1)(x – 1) = 0
b. (2x – 3)(-x + 7) = 0
c. (x + 3)3 – 9(x + 3) = 0
Câu 3: Giải các phương trình sau:
Câu 1:
a) Ta có: 7x+21=0
\(\Leftrightarrow7x=-21\)
hay x=-3
Vậy: S={-3}
b) Ta có: 3x-2=2x-3
\(\Leftrightarrow3x-2-2x+3=0\)
\(\Leftrightarrow x+1=0\)
hay x=-1
Vậy: S={-1}
c) Ta có: 5x-2x-24=0
\(\Leftrightarrow3x=24\)
hay x=8
Vậy: S={8}
Câu 2:
a) Ta có: \(\left(2x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=-1\\x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=1\end{matrix}\right.\)
Vậy: \(S=\left\{-\dfrac{1}{2};1\right\}\)
b) Ta có: \(\left(2x-3\right)\left(-x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-3=0\\-x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=3\\-x=-7\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=7\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{3}{2};7\right\}\)
c) Ta có: \(\left(x+3\right)^3-9\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+3-3\right)\left(x+3+3\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-6\end{matrix}\right.\)
Vậy: S={0;-3;-6}
*Giải các phương trình sau : >.< giúp với
a) 7x -5 = 13- 5x
b) 21- 3x = 21 + 3x
_C.ơn rất nhìu_
a) 7x-5+5x=13
\(\Rightarrow\)12x=18
x=\(\frac{3}{2}\)
b)21-3x-3x=21
21-6x=21
6x=0
x=0
tam giác ABC có trực tâm H(1;1) và phương trình cạnh AB: 5x-2y+6=0, phương trình cạnh AC: 4x +7y -21=0. Viết phương trình cạnh BC. Giải chi tiết dùm mình pls và ▲ là t...g...
- toạ độ điểm A(0,3) => vecto ah (1;-2)
mà vecto ah vuông góc vecto bc => vecto chỉ phương ah = vecto pháp tuyến bc = (1;-2)
B thuộc AB => 5xb - 2yb = -6
C thuộc AC => 4xc + 7yc = 21
xc - xb = 1
yc - yb = -2
giải hệ 4 pt => toạ độ điểm B, C
- Có vecto pháp tuyến, điểm B(C) => viết phương trình đường thẳng
Giải các phương trình sau:
a) x − 5 x − 1 + x + 5 x + 1 = 2 ;
b) 1 x − 1 − 2 2 − x = 5 x − 1 x − 2 ;
c) 3 x − 1 = 3 x + 2 1 − x 2 − 4 x + 1 ;
d) 1 x − 1 − 2 x 2 − 5 x 3 − 1 = 4 x 2 + x + 1 .
Giải phương trình đồng dư sau:
7x4 -8x-2=0 (mod27)
Giải các phương trình sau:
a) 5 x = x + 2 b) 7 x − 3 − 2 x + 6 = 0 ;
c) x 2 − x − 3 + x = 0 ; d) 2 x − 3 − 21 = x .
giải phương trình
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
ĐK:....
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
<=> \(\left(\sqrt{3x^2+6x+7}-2\right)+\left(\sqrt{5x^2+10x+21}-4\right)=-1-2x-x^2\)
<=> \(\frac{3\left(x+1\right)^2}{\sqrt{3x^2+6x+7}+2}+\frac{5\left(x+1\right)^2}{\sqrt{5x^2+10x+21}+4}+\left(x+1\right)^2=0\)
<=> \(\left(x+1\right)^2\left(\frac{3}{\sqrt{3x^2+6x+7}+2}+\frac{5}{\sqrt{5x^2+10x+21}+4}+1\right)=0\)
<=> x + 1 = 0
<=> x = -1. ( đối chiếu điều kiện )
Kết luận.
Giải theo cách ngắn gọn nhất nhẹ cậu vì cô Chi đã làm bên dưới rồi
\(\sqrt{3x^2+6x+7}+\sqrt{5x^2+10x+21}=5-2x-x^2\)
Vì vế trái của phương trình không nhỏ hơn 6 , còn vế phải không lớn hơn 6 . Vậy đẳng thức chỉ xảy ra khi cả 2 vế đều bằng 6
=> x = -1