chõa+d=c+b và a^2+d^2=b^2+c^2
chung minh rang a/b=c/d
CHo ti le thuc a/b=c/d Chung minh rang (a+b/c+d)^2=a^2+b^2/c^2+d^2
cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)
Vậy ta có đpcm
b)Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{c}{d}=\frac{a-c}{b-d}\)
Vậy ta có đpcm
c) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\begin{cases}a=bk\\c=dk\end{cases}\)
=>\(\frac{a^2}{b^2}=\frac{\left(bk\right)^2}{b^2}=\frac{b^2k^2}{b^2}=k^2\) (1)
Mặt khác:\(\frac{ac}{bd}=\frac{bk.dk}{bd}=k^2\) (2)
Từ (1) và (2) => \(\frac{a^2}{b^2}=\frac{ac}{bd}\left(đpcm\right)\)
giai ra gium luon di em moi hoc toi bai ti le thuc
cho a/b=c/d chứng minh rang a) a/b = a+c/b+d
b) a+b/c+d = a-b/c-d
c) a^2/b^2 = ac/bd
b) \(ad=bc\)
\(\Rightarrow ac-ad+bc-bd=ac-bc+ad-bd\)
\(\Rightarrow a.\left(c-d\right)+b.\left(c-d\right)=c.\left(a-b\right)+d.\left(a-b\right)\)
\(\Rightarrow\left(a+b\right)\left(c-d\right)=\left(c+d\right)\left(a-b\right)\)
\(\Rightarrow\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
ai giai gium minh ma cinh xac nhat minh cho
cho ti le thuc voi a,b,c,d thuoc z b,d khac 0 chung minh rang a^2 + b^2 phần c^2 + d^2 =a*b phần c*d
Đặt:a/b=c/d=k =>a=bk,c=dk
Thay vào vế trái ta có:
a^2+b^2/c^2+d^2=b^2.k^2+b^2/d^2.k^2+d^2=b^2+b^2/d^2+d^2=2b^2/2d^2=b^2/d^2(1)
Thay vào vế phải ta có:
ab/cd=b^2.k/d^2.k=b^2/d^2(2)
Từ 1 và 2 =>đpcm
a,b,c,d>0 chung minh rang 2< (a+b)/(a+b+c)+(b+c)/(b+c+d)+(c+d)/(c+d+a)+(d+a)/(d+a+b)<3
cho ti le thuc a/b=c/d .chung minh rang a*b/c*d= (a=b)^2/(c*d)^2
cho a+b=c+d
va a^2+b^2=c^2+d^2
chung minh rang
a^2018+b^2018=c^2018+d^2018
Chung minh rang a/b=c/d thi a2+b2/c2+d2=ab/d
Ta co a/b=c/d
=> a/c=b/d
=> ab/cd=a2/c2=b2/d2=a2+b2/c2+d2 (dpcm)
cho 2 p/s a/b vs c/d (a,b,c,d la cac so nguyen duong ) chung minh rang neu a/b < c/d thi b/a > d/c