Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
thanh ngọc
Xem chi tiết
Hoàng Phúc
21 tháng 5 2016 lúc 8:06

3x-4y=0=>3x=4y=>x=4y/3

bn thay x vào rồi lm tiếp

Lê Chí Công
20 tháng 5 2016 lúc 22:14

ko co dk ak

Lê Chí Công
20 tháng 5 2016 lúc 22:17

neu ko co dk thj la 0

Thuhuyen Le
Xem chi tiết
Thắng Nguyễn
30 tháng 3 2017 lúc 17:27

Sửa thành tìm GTLN nhé !

Với x,y,z>0 chia 2 vế của \(xy+yz+xz=xyz\) cho \(xyz\) ta có :

\(xy+yz+xz=xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\)

Áp dụng BĐT Cauchy-Schwarz ta có: 

\(\frac{1}{4x+3y+z}\le\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)\). Tương tự cho 2 BĐT kia:

\(\frac{1}{x+4y+3z}\le\frac{1}{64}\left(\frac{1}{x}+\frac{4}{y}+\frac{3}{z}\right);\frac{1}{3x+y+4z}\le\frac{1}{64}\left(\frac{3}{x}+\frac{1}{y}+\frac{4}{z}\right)\)

Cộng theo vế 3 BĐT trên ta có: 

\(M\leΣ\frac{1}{64}\left(\frac{4}{x}+\frac{3}{y}+\frac{1}{z}\right)=Σ\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)=\frac{1}{8}\)

Đẳng thức xảy ra khi \(x=y=z=3\)

Toản Hồ
Xem chi tiết
Trần Anh Tú
Xem chi tiết
Hoàng Lê Bảo Ngọc
9 tháng 9 2016 lúc 20:49

Áp dụng bđt Bunhiacopxki , ta có : 

\(0=\left(3.x+4.y\right)^2\le\left(3^2+4^2\right)\left(x^2+y^2\right)\)

\(\Rightarrow x^2+y^2\ge0\)

=> Min M = 0 \(\Leftrightarrow\begin{cases}\frac{x}{3}=\frac{y}{4}\\3x+4y=0\end{cases}\) \(\Leftrightarrow x=y=0\)

Nguyễn Huy Tú
9 tháng 9 2016 lúc 20:48

bài này ở chỗ nào thế

Hưng Tạ Việt
Xem chi tiết
Phạm Minh Quang
Xem chi tiết
✿✿❑ĐạT̐®ŋɢย❐✿✿
14 tháng 6 2019 lúc 14:08

2.

A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)

Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3

Nguyễn Huy Hoàng
Xem chi tiết
Nguyễn Linh Chi
28 tháng 11 2019 lúc 10:31

Câu hỏi của KHANH QUYNH MAI PHAM - Toán lớp 8 - Học toán với OnlineMath

Em tham khảo!

Khách vãng lai đã xóa
Phạm Anh
Xem chi tiết
Nguyễn Hoàng Anh Phong
23 tháng 2 2019 lúc 18:47

a) ta có: \(\frac{x}{y}=\frac{3}{4}\Rightarrow4x=3y\)

\(D=\frac{4x-5y}{3x+4y}=\frac{3y-5y}{3y+4y-x}=\frac{-2y}{7y-x}=\frac{-2y}{7y-y3:4}\)

\(=\frac{-2y}{\frac{25}{4}y}=-2y:\left(\frac{25}{4}y\right)=-\frac{8}{25}\)

Nguyễn Hoàng Anh Phong
23 tháng 2 2019 lúc 18:50

b) ta có: M=3x.(x-y) chia hết cho 11

N = y2 - x2 = y2 - xy - x2 + xy = y.(y-x) - x.(x-y) = (y-x).(y+x) = - (x-y).(y+x) chia hết cho 11

=> M-N chia hết cho 11 (đpcm)

Tô Thu Huyền
Xem chi tiết
Đức Hiếu
16 tháng 7 2017 lúc 8:13

Bài 2:

a, Sửa đề:

\(x^2-4=x^2+2x-2x-4=x\left(x+2\right)-2\left(x+2\right)\)

\(=\left(x+2\right)\left(x-2\right)\)

b, \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)

\(=\left[\left(x+2\right)\left(x+5\right)\right]\left[\left(x+3\right)\left(x+4\right)\right]-24\)

\(=\left(x^2+5x+2x+10\right)\left(x^2+4x+3x+12\right)-24\)

\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)(1)

Đặt \(a=x^2+7x+10\Rightarrow a+2=x^2+7x+12\)

\(\Rightarrow\left(1\right)=a\left(a+2\right)-24=a^2+2a-24\)

\(=a^2-4a+6a-24=a.\left(a-4\right)+6.\left(a-4\right)\)

\(=\left(a-4\right)\left(a+6\right)\)(2)

\(a=x^2+7x+10\) nên

\(\left(2\right)=\left(x^2+7x+10-4\right)\left(x^2+7x+10+6\right)\)

\(=\left(x^2+7x+6\right)\left(x^2+7x+16\right)\)

\(=\left(x^2+x+6x+6\right)\left(x^2+7x+16\right)\)

\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right]\left(x^2+7x+16\right)\)

\(=\left(x+1\right).\left(x+6\right)\left(x^2+7x+16\right)\)

Chúc bạn học tốt!!!

Như Khương Nguyễn
16 tháng 7 2017 lúc 8:27

1,

Dùng định lý Bơ du :

\(f\left(-\dfrac{1}{3}\right)=3\left(-\dfrac{1}{3}\right)^3+10\left(-\dfrac{1}{3}\right)^2+3.\left(-\dfrac{1}{3}\right)+a-5=0\)

\(=>a=5\)

Vậy a = 5 thì A chia hết cho B .

b,

M = \(x^2-4x+4y^2+4y+5\)

= \(\left(x^2-4x+4\right)+\left(4y^2+4y+1\right)+5-\left(1+4\right)\)

\(=\left(x-2\right)^2+\left(2y+1\right)^2+0\)

Vậy GTNN của M = 0

khi x = 2 ; 2y + 1 = 0 => y = 1/2

Như Khương Nguyễn
16 tháng 7 2017 lúc 8:30

\(x^2+4=x^2+4x+4-4x\)

\(=\left(x+2\right)^2-\left(2\sqrt{x}\right)^2\)

\(=\left(x-2\sqrt{x}+2\right)\left(x+2\sqrt{x}+2\right)\)

sao lại ra đc :D