Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Thu Thao
10 tháng 12 2020 lúc 17:18

\(A=\left(a+b+c\right)\left(bc+ac+ab\right)-abc\)

\(=abc+b^2c+bc^2+a^2c+abc+ac^2+a^2b+ab^2+abc-abc\)

\(\left(b^2c+bc^2\right)+\left(a^2c+a^2b\right)+\left(ac^2+abc\right)+\left(ab^2+abc\right)\)

\(=bc\left(b+c\right)+a^2\left(b+c\right)+ac\left(c+b\right)+ab\left(b+c\right)\)

\(=\left(b+c\right)\left(bc+a^2+ac+ab\right)\)

\(=\left(b+c\right)\left[a\left(a+b\right)+c\left(a+b\right)\right]\)

\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\)

tth_new
Xem chi tiết
IceAnh
24 tháng 10 2018 lúc 9:09

-(bc^2-ac^2-b^2c-a^2c+ab^2-a^2b)

Huỳnh Quang Sang
24 tháng 10 2018 lúc 9:56

Ta có : \(A=ab(a-b)+bc(b-c)+ca(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(c-b)+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc[(c-a)+(a-b)]+ac(c-a)\)

\(\Rightarrow A=ab(a-b)-bc(a-b)-bc(c-a)+ac(c-a)\)

\(\Rightarrow A=(a-b)(ab-bc)+(c-a)(ac-bc)\)

\(\Rightarrow A=b(a-b)(a-c)-(a-c)c(a-b)\)

\(\Rightarrow A=(a-c)(a-b)(b-c)\)

Chúc học tốt trong kì thi tới :>

Cầm Dương
Xem chi tiết
Trần Anh
10 tháng 7 2017 lúc 14:56

\(ab\left(a-b\right)+bc\left(b-c\right)+ca\left(c-a\right)=ab\left(a-b\right)+b^2c-bc^2+c^2a-ca^2\)

\(=ab\left(a-b\right)-\left(ca^2-b^2c\right)+\left(c^2a-bc^2\right)=ab\left(a-b\right)-c\left(a+b\right)\left(a-b\right)+c^2\left(a-b\right)\)

\(=\left(a-b\right)\left(ab-ca-cb+c^2\right)=\left(a-b\right)\left[\left(ab-ca\right)-\left(cb-c^2\right)\right]\)

\(=\left(a-b\right)\left[a\left(b-c\right)-c\left(b-c\right)\right]=\left(a-b\right)\left(b-c\right)\left(a-c\right)\)

Thanh Tu Nguyen
Xem chi tiết
Lê Song Phương
5 tháng 10 2023 lúc 20:48

\(C=c\left[b\left(a+d\right)\left(b-c\right)+a\left(b+d\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab+bd\right)\left(b-c\right)+\left(ab+ad\right)\left(c-a\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab^2-abc+b^2d-bcd+abc-a^2b+acd-a^2d\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[\left(ab^2-a^2b\right)+\left(b^2d-a^2d\right)+\left(acd-bcd\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left[ab\left(b-a\right)+d\left(a+b\right)\left(b-a\right)+cd\left(a-b\right)\right]+ab\left(c+d\right)\left(a-b\right)\)

\(C=c\left(a-b\right)\left(-ab-da-db+cd\right)+ab\left(c+d\right)\left(a-b\right)\)

\(C=\left(a-b\right)\left(-abc-acd-bcd+c^2d+abc+abd\right)\)

\(C=\left(a-b\right)\left(-acd-bcd+abd+c^2d\right)\)

\(C=c\left(a-b\right)\left(c^2+ab-ac-bc\right)\)

\(C=c\left(a-b\right)\left[\left(c^2-ac\right)-\left(bc-ab\right)\right]\)

\(C=c\left(a-b\right)\left[c\left(c-a\right)-b\left(c-a\right)\right]\)

\(C=c\left(a-b\right)\left(c-a\right)\left(c-b\right)\)

 

Nữ hoàng sến súa là ta
Xem chi tiết
Hoàng Ngọc Tuyết Nhung
Xem chi tiết
Quang Nhat
Xem chi tiết
nguyễn thành quân
12 tháng 7 2018 lúc 14:07

a b<a+b> <a-b> +  bc < b - c> < b + c >+ ca < c - a > < c + a>

a² b+ ab² + a² b - ab²  + b² c -bc²  +b² c + bc²  + c² a -ca²  + c² a +ca² 

<a² b +a² b> + < ab² - ab² > + < b²c + b² c > + <-bc² + bc² > + < c² a +c² a> + <-ca² + ca² >

2 a² b + 2 b² c +2 c² a

XONG NHA NGƯỜI ANH EM

Diệu Anh Hoàng
Xem chi tiết
Nguyễn Anh Tú
Xem chi tiết
Ngu Ngu Ngu
12 tháng 5 2017 lúc 11:15

Ta có:

\(A=bc\left(a+d\right)\left(b-c\right)-ac\left(b+d\right)\left(a-c\right)+ab\left(c+d\right)\left(a-b\right)\)

\(=bc\left(a+d\right)\left[\left(b-a\right)+\left(a-c\right)\right]-ac\left(a-c\right)\left(b+d\right)+ab\left(c+d\right)\)\(\left(a-b\right)\)

\(=bc\left(a+d\right)\left(a-b\right)+bc\left(a+d\right)\left(a-c\right)-ac\left(b+d\right)\left(a-c\right)\)\(+ab\left(c+d\right)\left(a-b\right)\)

\(=b\left(a-b\right)\left[a\left(c+d\right)-c\left(a+d\right)\right]+c\left(a-c\right)\left[b\left(a+d\right)-a\left(b+d\right)\right]\)

\(=b\left(a-b\right).d\left(a-c\right)+c\left(a-c\right).d\left(b-a\right)\)

\(=d\left(a-b\right)\left(a-c\right)\left(b-c\right)\)