\(\sqrt{81}\)/9+\(\sqrt{\frac{64}{4}}\)
Tính
a) \(2\sqrt{\frac{25}{16}}-3\sqrt{\frac{49}{36}}+4\sqrt{\frac{81}{64}}\)
b) \(\left(3\sqrt{2}\right)^2-\left(4\sqrt{\frac{1}{2}}\right)^2+\frac{1}{16}.\left(\sqrt{\frac{3}{4}}\right)^2\)
c) \(\frac{2}{3}\sqrt{\frac{81}{16}}-\frac{3}{4}\sqrt{\frac{64}{9}}+\frac{7}{5}.\sqrt{\frac{25}{196}}\)
a) = \(\frac{7}{2}\)
b) = \(\frac{643}{64}\)
c) = 0
Giúp mik với
Tính
a)\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right).\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^2\)
b)\(\left(-\sqrt{\frac{5}{4}}\right)^2-\sqrt{\frac{9}{4}}:\left(-4,5\right)-\sqrt{\frac{25}{16}}.\sqrt{\frac{64}{9}}\)
c)\(-2^4-\left(-2\right)^2:\left(-\sqrt{\frac{16}{121}}\right)-\left(-\sqrt{\frac{2}{3}}\right)^2:\left(-2\frac{2}{3}\right)\)
Tính \(\frac{2}{3}\sqrt{81}-\left(-\frac{3}{4}\right):\sqrt{\frac{9}{64}}+\left(\frac{\sqrt{2}}{3}\right)^0-\left(\sqrt{3}\right)^2\)
Luyện tập – Vận dụng 3
Rút gọn mỗi biểu thức sau:
a) \(\sqrt[3]{{\frac{{125}}{{64}}}}.\sqrt[4]{{81}}\)
b) \(\frac{{\sqrt[5]{{98}}.\sqrt[5]{{343}}}}{{\sqrt[5]{{64}}}}\)
a: \(=\dfrac{5}{4}\cdot3=\dfrac{15}{4}\)
b: \(=\sqrt[5]{\dfrac{98}{64}\cdot343}=\sqrt[5]{\left(\dfrac{7}{2}\right)^5}=\dfrac{7}{2}\)
Tính \(\frac{2}{3}\sqrt{81}\)-\((\frac{-3}{4})\):\(\sqrt{\frac{9}{64}}-\)\((\frac{\sqrt{5}}{2011})^0\)
\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right):\sqrt{\frac{9}{64}}-\left(\frac{\sqrt{5}}{2011}\right)^0\)
\(=\frac{2}{3}\cdot9+\frac{3}{4}\cdot\frac{8}{3}-1\)
\(=6+2-1\)
\(=7\)
\(\frac{2}{3}\sqrt{81}-\left(-\frac{3}{4}\right):\sqrt{\frac{9}{64}}-\left(\frac{\sqrt{5}}{2011}\right)^0=\frac{2}{3}.9-\left(-2\right)-1=6+2-1=7\)
\(\frac{2}{3}\sqrt{81}-\left(\frac{-3}{4}\right):\sqrt{\frac{9}{64}}-\)\(\left(\frac{\sqrt{5}}{2011}\right)^0\)
\(=\frac{2}{3}.9+\frac{3}{4}.\frac{8}{3}-1\)
\(=6+2-1=7\)
cho \(x=\frac{\sqrt[3]{5-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}.\)\(\sqrt[3]{8+3\sqrt{5}}\)
\(y=\frac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\frac{2-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt{81}}\)
Tính xy
cho x=3√5−3√5+3√64−12√203√57 .3√8+3√5
y=3√9−√23√3+4√2 +2−93√94√2−√81
Tính xy
Thực hiện phép tính:
a) \(\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
b) \(2^8:2^5+3^3.2-12\)
c) \(\frac{1}{2}\sqrt{64}-\sqrt{\frac{4}{25}}+1^{2012}\)
d) \(\left(-3\right)^2+\sqrt{\frac{16}{25}}-\sqrt{9}+\frac{\sqrt{81}}{3}\)
\(a,\frac{-5}{9}.\left(\frac{3}{10}-\frac{2}{5}\right)\)
\(=\frac{-5}{9}.\frac{-1}{10}\)
\(=\frac{1}{18}\)
\(b,2^8:2^5+3^3.2-12\)
\(=2^3+9.2-12\)
\(=8+18-12\)
\(=26-12\)
\(=14\)
Câu c,d em chưa học nên không biết làm ạ, mong mọi người thông cảm!!!
Sửa lại câu b
\(=2^3+27.2-12\)
\(=8+54-12\)
\(=62-12\)
\(=50\)
Giải các phương trình sau
a) \(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
b)\(\sqrt{18x+9}-\sqrt{8x+4}+\frac{1}{3}\sqrt{2x+1}=4\)
a, ĐK :a >= 3
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)
b, \(ĐK:x\ge-\frac{1}{2}\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow x=4\left(tm\right)\)
a) đk: \(a\ge3\)
pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)
\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)
\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)
cho x=\(\left(\dfrac{\sqrt[3]{8-3\sqrt{5}}+\sqrt[3]{64-12\sqrt{20}}}{\sqrt[3]{57}}\right)\sqrt[3]{8+3\sqrt{5}}\);y=\(\left(\dfrac{\sqrt[3]{9}-\sqrt{2}}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\sqrt{2}-9\sqrt[3]{9}}{\sqrt[4]{2}-\sqrt[3]{81}}\right)\)
a rút gọn x và y
b tính T = xy
\(x=\dfrac{3\sqrt[3]{8-3\sqrt{5}}}{\sqrt[3]{57}}.\sqrt[3]{8+3\sqrt{5}}=\dfrac{3\sqrt[3]{\left(8-3\sqrt{5}\right)\left(8+3\sqrt[]{5}\right)}}{\sqrt[3]{57}}=\sqrt[3]{\dfrac{19}{57}}=\dfrac{1}{\sqrt[3]{3}}\)
\(y=\dfrac{\left(\sqrt[3]{3}+\sqrt[4]{2}\right)\left(\sqrt[3]{3}-\sqrt[4]{2}\right)}{\sqrt[3]{3}+\sqrt[4]{2}}+\dfrac{\left(\sqrt[4]{2}-\sqrt[3]{81}\right)\left(\sqrt[4]{2}+\sqrt[3]{81}\right)}{\sqrt[4]{2}-\sqrt[3]{81}}\)
\(=\sqrt[3]{3}-\sqrt[4]{2}+\sqrt[4]{2}+\sqrt[3]{81}=\sqrt[3]{3}+3\sqrt[3]{3}=4\sqrt[3]{3}\)
\(T=xy=\dfrac{4\sqrt[3]{3}}{\sqrt[3]{3}}=4\)