CMR nếu ab = 2.cd thì abcd chia hết cho 67
CMR nếu\(\overline{ab}\) = 2.\(\overline{cd}\) thì\(\overline{abcd}\) chia hết cho 67
Ta có:
\(\overline{abcd}=100.\overline{ab}+\overline{cd}\)
\(=100.2.\overline{cd}+\overline{cd}\)
\(=200.\overline{cd}+\overline{cd}\)
\(=201.\overline{cd}⋮67\)
Vậy nếu \(\overline{ab}=2.\overline{cd}\) thì \(\overline{abcd}⋮67\)
chứng minh rằng nếu ab= 2. cd thì abcd chia hết cho 67
số abcd = 100ab+cd=200cd+cd (vì ab = 2cd)
hay = 201cd
Mà 201 \(⋮\) 67
Do đó : nếu ab = 2cd thì abcd \(⋮\) 67
cmr:
a)neu ab+cd+eg chia het cho 11 thi abcdeg chia hết cho 115
b)cho abc + deg chia hết cho 37 thì abcdeg chia hết cho 37
c)nếu ab= 2cd suy ra abcd chia hết cho 67
chứng tỏ nếu ab = 2 cd thì abcd chia hết cho 67
abcd = cd x 2 x 100 + cd
abcd = cd x 200 + cd
abcd = cd x 201
abcd = cd x 3 x 67
=> abcd chia hết cho 67
Ta có :
\(abcd=cd×2×100+cd\)
\(abcd=cd×200+cd\)
\(abcd=cd×201\)
\(abcd=cd×3×67\)
\(\Rightarrow\)abcd chia hết cho 67
Chứng minh rằng: Nếu ab=2.cd thì abcd chia hết cho 67.
abcd = 1000a + 100b + 10c + d = 100ab + cd = 200 cd + cd = 201 cd
Mà 201 chia hết cho 67
=> ab = 2cd chia hết cho 67
abcd=100ab+cd=200cd+cd(vì ab=2cd)
hay 201cd
mà 201 chia hết cho 67
=> đpcm
abcd= 1000a+100b+10c+d
= 100ab+cd
= 200cd + cd
= 201cd
Mà 201 chia hết cho 67
=> ab= 2cd chia hết cho 67
Chứng minh: nếu ab = 2 x cd thì abcd chia hết cho 67
mấy cái ab, cd, abcd là có gạch trên đầu nha bạn
ta có:
abcd = ab*100 + cd = 2*cd*100 + cd = 200*cd +cd
= 201*cd = 67*3*cd
vậy abcd chia hết cho 67
CMR ab=2.cd abcd chia hết cho 67
CMR nếu ab +cd chia hết cho 11 thì abcd chia hết cho11 {ab;cd;abcd có gạch trên đầu}
Ta có
abcd = ab.100 + cd
= ab.99 + ab + cd
= ab.99 + (ab + cd)
Do ab.99= ab.9.11 chia hết cho 11 và theo bài ra ta có ab + cd chia hết cho 11
nên ab.99 + (ab + cd) chia hết cho 11
Vậy abcd chia hết cho 11
CMR nếu ab + cd chia hết cho 99 thì abcd chia hết cho 99