Chứng tỏ rằng tổng của các số lẻ liên tiếp là số chính phương
chứng tỏ rằng tổng các số lẻ liên tiếp từ 1 là 1 số chính phương
Theo bài ra ta cần chứng minh tổng \(1+3+5+7+....+\left(2n-1\right)\) là SCP
Thật vậy,từ 1-> 2n-1 có: \(\frac{\left(2n-1\right)-1}{2}+1=\frac{2n-2}{2}+1=\frac{2n-2+2}{2}=\frac{2n}{2}=n\) (số hạng)
\(=>1+3+5+7+...+\left(2n-1\right)=\frac{\left(2n-1+1\right).n}{2}=\frac{2n.n}{2}=n^2\) là 1 SCP
Vậy ta có đpcm
Ta có tổng các số lẻ liên tiếp từ 1 là: 1 + 3 + 5 + 7 + ... + 2n - 1
Số số hạng là:
( 2n - 1 - 1 ) : 2 + 1 = n
Vậy tổng là:
( 2n - 1 + 1 ) . n : 2 = 2n.n : 2 = n2 ( đpcm )
a) Chứng tỏ rằng phương trình: mx – 3 = 2m – x – 1 luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
b) Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là
một số chính phương lẻ
\(a)\) \(Thay\) \(x=2\) \(\text{ vào }\)\(PT:\)
\(2m-3=2m-2-1.\\ \Leftrightarrow2m-3-2m+2+1=0.\)
\(\Leftrightarrow0=0\) (luôn đúng).
\(\Rightarrow\) PT luôn nhận x = 2 làm nghiệm với mọi giá trị của m.
Chứng minh rằng tổng các bình phương hai số lẻ liên tiếp không thể là số chính phương.
Gọi 2 số lẻ liên tiếp là 2k−1 và 2k+1, với k là số tự nhiên.
Tổng các bình phương của hai số lẻ liên tiếp là: (2k−1)2+(2k+1)2=4k2−4k+1+4k2−4k+1=8k2+2
Tổng trên chia cho 4 dư 2; Vậy nó không thể là số chính phương (Số chính phương hoặc chia hết cho 4 hoặc chia cho 4 dư 1)
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m\(\in\)N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương .
──────▄▌▐▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▌
───▄▄██▌█ ░Xe chở 100000000 đến đây..
▄▄▄▌▐██▌█ ░░░░░░ ░░░░░░░░░ ░░░░░░░▐\.
███████▌█▄▄▄▄▄▄ ▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄ ▄▄▌ \.
▀❍▀▀▀▀▀▀▀❍❍▀▀▀▀ ▀▀▀▀▀▀▀▀▀▀▀❍❍ ▀▀.
Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ.
Gọi 2 số chính phương liên tiếp đó là \(n^2,\left(n+1\right)^2\). Ta có:
\(P=n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^2\left(n^2+2n+1\right)\)
\(=n^4+2n^3+3n^2+2n+1\)
Ta có \(\dfrac{P}{n^2}=n^2+2n+3+\dfrac{2}{n}+\dfrac{1}{n^2}\)
\(=\left(n+\dfrac{1}{n}\right)^2+2\left(n+\dfrac{1}{n}\right)+1\)
\(=\left(n+\dfrac{1}{n}+1\right)^2\)
\(\Rightarrow P=\left[n\left(n+\dfrac{1}{n}+1\right)\right]^2=\left(n^2+n+1\right)^2=\left[n\left(n+1\right)+1\right]^2\)
Dễ dàng kiểm chứng được \(2|n\left(n+1\right)\), do đó \(n\left(n+1\right)+1\) là số lẻ, suy ra đpcm.
Hai số chính phương liên tiếp là \(n^2;\left(n+1\right)^2\)
Theo đề ta có :
\(n^2+\left(n+1\right)^2+n^2\left(n+1\right)^2\)
\(=n^2+n^2+2n+1+n^4+2n^3+n^2\)
\(=\left(n^4+n^3+n^2\right)+\left(n^3+n^2+n\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=n^2\left(n^2+n+1\right)+n\left(n^2+n+1\right)+\left(n^2+n+1\right)\)
\(=\left(n^2+n+1\right)^2\)
\(=\left[n\left(n+1\right)+1\right]^2\)
mà \(n\left(n+1\right)⋮2\) (là 2 số tự nhiên liên tiếp)
\(\Rightarrow n\left(n+1\right)+1\) là số lẻ
\(\Rightarrow\left[n\left(n+1\right)+1\right]^2\) là số chính phương lẻ
\(\Rightarrow dpcm\)
chứng tỏ rằng tổng các bình phương của 3 số tự nhiên liên tiếp ko pải là số chính phương
Chứng minh rằng tổng các bình phương hai số lẻ liên tiếp không thể là số chính phương.
đây là câu hỏi trong chuyên đề SCP ở HỌC BÀI mà
Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương
K nhak ^_^ ^_^ ^_^
Cho hai số chính phương liên tiếp. Chứng minh rằng tổng của hai số đó cộng với tích của chúng là một số chính phương lẻ
Cho 2 số chính phương liên tiếp. Chứng minh rằng: tổng của 2 số đó cộng với tích của chúng là 1 số chính phương lẻ
gọi 2 số chính phương liên tiếp là k^2 và (k + 1)^2
theo đề bài ta có :
k^2 + (k+1)^2 + k^2(k+1)^2
= k^2 + k^2 + 2k + 1 + k^2(k^2 + 2k + 1)
= 2k^2 + 2k + 1 + k^4 + 2k^3 + k^2
= k^4 + 2k^3 + 3k^2 + 2k + 1
= k^4 + k^2 + 1 + 2k^3 + 2k^2 + 2k
= (k^2 + k + 1)^2
= [k(k+1)+1]^2
k(k+1) chia hết cho 2 (2 số tự nhiên liên tiếp) => k(k+1) +1 lẻ
=> [k(k+1)+1)^2 là số chính phương lẻ
Giả sử hai số chính phương liên tiếp đó là \(a^2,\left(a+1\right)^2\)
Ta có : \(a^2+\left(a+1\right)^2+a.\left(a+1\right)\)
\(=a^2+a^2+2a+1+a^2+a\)
\(=3a^2+3a+1\)
.....
Cho 2 số chính phương liên tiếp. Chứng minh rằng tổng 2 số đó cộng với tích của chúng là 1 số chính phương lẻ.