E= (1/3-1).(1/6-1).(1/10-1)...(1/45-1)
E= (1/3-1).(1/6-1).(1/10-1)...(1/45-1)
\(E=\left(\dfrac{1}{3}-1\right)\cdot\left(\dfrac{1}{6}-1\right)\cdot\left(\dfrac{1}{10}-1\right)\cdot...\cdot\left(\dfrac{1}{45}-1\right)\)
\(E=1\cdot\left(\dfrac{1}{3}+\dfrac{1}{6}+\dfrac{1}{10}+...+\dfrac{1}{45}\right)\)
\(E=1\cdot\left(\dfrac{1}{45}-\dfrac{1}{3}\right)\div2+1\)
\(E=\dfrac{1}{22}\)
tinh nhanh
a,A=100+98+96+...+2-97-95-...-1
b,B=1+2-3-4+5+6-7-8+9+10-11-12+...-229-330+301+302
c,C=41*66+34*41/3+7+11+...+79
d,D=1+2+3+...+200/6+8+10+...+34
e,E=1*5*6+2*10*12+20*24*4+9*45*54/1*3*5+2*6*10+4*12*20+9*27*45
Câu 1 : B = 1/3 + 1/6 + 1/10 + ... + 1/45
Câu 2 : D = 3/1.3 + 3/3.5 + 3/5.7 + ... + 3/99.101
Câu 3 : E= 4/1.3 + 4/3.5 + 5/5.7 + ... + 4/205.207
Câu 4 : F= 1/1.4 + 1/4.7 + 1/10 + ...
- tổng này có 54 số hạng
Câu 5 : G= 1/5 + 1/45 + 1/117 + 1/221
- tổng này có 54 số hạng
Câu 2:
\(D=\dfrac{3}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{99}-\dfrac{1}{101}\right)\)
\(=\dfrac{3}{2}\cdot\dfrac{100}{101}=\dfrac{150}{101}\)
Câu 3:
\(E=2\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{205}-\dfrac{1}{207}\right)\)
\(=2\cdot\left(1-\dfrac{1}{207}\right)=2\cdot\dfrac{206}{207}=\dfrac{412}{207}\)
Câu 5:
\(G=\dfrac{1}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{17}\right)\)
\(=\dfrac{1}{4}\cdot\dfrac{16}{17}=\dfrac{4}{17}\)
1+1+1+1+1+2+3+4+5+6+7+8+9+10 x 1+1+1+1+1+2+3+4+5+6+7+8+9+10 +1+1+1+1+1+2+3+4+5+6+7+8+9+10 - 10 x 9 - 9 + 45 +46 +47 =
Chị em hk lớp 6 đó, mấy ac giúp chị e vs nha
Cho E= 92-1/9-2/10-3/11-...-92/100
F= 1/45=1/50+1/55=...=1/500
Tính E/F.
s=1+1/3+1/6 +1/10................+1/45 =?
\(S=1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{45}\)
\(S=2.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)\)
\(S=2.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(S=2.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(S=2.\left(1-\frac{1}{10}\right)\)
\(S=2.\frac{9}{10}\)
\(S=\frac{9}{5}\)
1/3+1/6+1/10+.....+1/45
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\)
= \(2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}\right)\)
= \(2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
= \(2.\left(\frac{1}{2}-\frac{1}{10}\right)\)
= \(2.\frac{2}{5}\)
= \(\frac{4}{5}\)
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{1}{45}\\ =\frac{2}{6}+\frac{2}{12}+...+\frac{2}{90}\\ =2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)\)
\(2\left(\frac{1}{2}-\frac{1}{10}\right)=\frac{4}{5}\)
A=1+1/3+1/6+1/10+1/15+1/21+1/28+1/36+1/45
Lời giải:
$\frac{A}{2}=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}$
$=\frac{2-1}{1\times 2}+\frac{3-2}{2\times 3}+\frac{4-3}{3\times 4}+\frac{5-4}{4\times 5}+\frac{6-5}{5\times 6}+\frac{7-6}{6\times 7}+\frac{9-8}{8\times 9}+\frac{10-9}{9\times 10}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}$
$=1-\frac{1}{9}=\frac{8}{9}$
$\Rightarrow A=2\times \frac{8}{9}=\frac{16}{9}$
1/2+1/3+1/6+1/10+1/15+...+1/36+1/45
\(\dfrac{1}{2}\) + \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + ... + \(\dfrac{1}{36}\) + \(\dfrac{1}{45}\)
= \(\dfrac{2}{4}\) + \(\dfrac{2}{6}\) + \(\dfrac{2}{12}\) + \(\dfrac{2}{20}\) + \(\dfrac{2}{30}\) + ... + \(\dfrac{2}{72}\) + \(\dfrac{2}{90}\)
= \(\dfrac{2}{2.2}\) + \(\dfrac{2}{2.3}\) + \(\dfrac{2}{3.4}\) + \(\dfrac{2}{4.5}\) + \(\dfrac{2}{5.6}\) + ... + \(\dfrac{2}{8.9}\) + \(\dfrac{2}{9.10}\)
= 2 (\(\dfrac{1}{2.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) + \(\dfrac{1}{4.5}\) + \(\dfrac{1}{5.6}\) + ... + \(\dfrac{1}{8.9}\) + \(\dfrac{1}{9.10}\))
= 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{2}\) + \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\) + \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\) + ... + \(\dfrac{1}{8}\) - \(\dfrac{1}{9}\) + \(\dfrac{1}{9}\) - \(\dfrac{1}{10}\)) = 2 (\(\dfrac{1}{2}\) - \(\dfrac{1}{10}\)) = 2 . \(\dfrac{2}{5}\) = \(\dfrac{4}{5}\)