Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuyết Loan Nguyễn Thị
Xem chi tiết
Trang Lê
Xem chi tiết
Hồ Thu Giang
12 tháng 8 2015 lúc 17:15

Gọi phép chia đó là n2 : 4

+ Nếu n chia hết cho 4

=> n2 chia hết cho 4

=> n2 chia 4 dư 0

+ Nếu n chia 4 dư 1

=> n2 chia 4 dư 12

=> n2 chia 4 dư 1

+ Nếu n chia 4 dư 2

=> n2 chia 4 dư 22

=> n2 chia 4 dư 4

=> n2 chia 4 dư 0

+ Nếu n chia 4 dư 3

=> n2 chia 4 dư 32

=> n2 chia 4 dư 9

=> n2 chia 4 dư 1

KL: Vậy số dư trong phép chia số chính phương cho 4 là 0 hoặc 1

Nguyễn Mai Oanh
Xem chi tiết
Nguyễn Mai Oanh
15 tháng 8 2019 lúc 20:38

hay giup minh voi

Nguyễn  Chí Hào
Xem chi tiết
Trần Thanh Phương
28 tháng 10 2018 lúc 14:26

Số chính phương luôn có tận cùng bằng : 0; 1; 4; 5; 6; 9

+) tận cùng bằng 0 => chia hết

+) tận cùng bằng 1 => dư 1

+) tận cùng bằng 4 => dư 4

+) tận cùng bằng 5 => chia hết

+) tận cùng bằng 6 => dư 1

+) tận cùng bằng 9 => dư 4

Vậy khi một số chính phương chia cho 5 có thể chia hết hoặc dư 1 hoặc dư 4

Lê Yên Hạnh
Xem chi tiết
Hoang Hung Quan
7 tháng 2 2017 lúc 20:30

Bài 1:

Theo đề bài ta có:

\(a=4q_1+3=9q_2+5\) (\(q_1\)\(q_2\) là thương trong hai phép chia)

\(\Rightarrow\left[\begin{matrix}a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\\a+13=9q_2+5+13=9\left(q_2+2\right)\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) suy ra: \(a+13=BC\left(4;9\right)\)

\(Ư\left(4;9\right)=1\Rightarrow a+13=BC\left(4;9\right)=4.9=36\)

\(\Rightarrow a+13=36k\left(k\ne0\right)\)

\(\Rightarrow a=36k-13=36\left(k-1\right)+23\)

Vậy \(a\div36\)\(23\)

Trần Quang Hưng
7 tháng 2 2017 lúc 20:21

Câu 1

Theo bài ra ta có:

\(a=4q_1+3=9q_2+5\)(q1 và q2 là thương của 2 phép chia)

\(\Rightarrow a+13=4q_1+3+13=4\left(q_1+4\right)\left(1\right)\)

\(a+13=9q_2+5+13=9.\left(q_2+2\right)\left(2\right)\)

Từ (1) và (2) ta có \(a+13\) là bội của 4 và 9 mà ƯC(4;9)=1

nên a là bội của 4.9=36

\(\Rightarrow a+13=36k\left(k\in N\right)\)

\(\Rightarrow a=36k-13\)

\(\Rightarrow a=36.\left(k-1\right)+23\)

Vậy a chia 36 dư 23

Hoang Hung Quan
7 tháng 2 2017 lúc 20:41

Bài 3:

\(a,2^{1000}\div5\)

Ta có:

\(2^{1000}=\left(2^4\right)^{250}=\overline{\left(...6\right)}^{250}=\overline{\left(...6\right)}\)

Vì a có tận cùng là 6

\(\Rightarrow2^{1000}\div5\)\(1\)

Phạm PHUONG
Xem chi tiết
Phong Thần
6 tháng 2 2021 lúc 8:27

Gọi b và c lần lượt là thương của các phép chia a cho 4 và chia a cho 9. (b,c là STN)

Ta có: a = 4b + 3 => 27a = 108b + 81 (1) (Cùng nhân với 27)

a = 9c + 5 => 28a = 252c + 140 (2) (Cùng nhân với 28)

Trừ (2) cho (1) ...=> 28a - 27a = 36.(7c - 3b) + 59 Hay a = 36. (7c - 3b + 1) + 23

Vậy a chia cho 36 dư 23. 

Nguyễn Duy Khánh
Xem chi tiết
Đỗ Nhật Anh
10 tháng 12 2023 lúc 10:43

.............

Minh Huyền
Xem chi tiết
Lê Thụy Sĩ
Xem chi tiết
ha thu phuong
12 tháng 9 2015 lúc 21:26

ta co 173-8=165=55.3;5.33;165.1