rút gon biểu thức
(2x+5)^2+3(x-2)(x+2)
Rút gon biểu thức sau:
\(\left(x^2-2\right)^2-\left(2x^5-8x^3+4x\right):2x\)
\(x\ne0\)
chia 2x
\(\Leftrightarrow\left(x^2-2\right)^2-\left(x^4-4x^2+2\right)=\left(x^4-4x^2+4\right)-x^4+4x^2-2=2\)
rút gon biểu thức :
(2x - 3)(x + 5) - x(2x + 7)
\(\left(2x-3\right)\left(x+5\right)-x\left(2x+7\right)\\ =2x^2-3x+10x-15-2x^2-7x\\ =\left(2x^2-2x^2\right)+\left(10x-3x-7x\right)-15\\ =-15\)
\(\left(2x-3\right)\left(x+5\right)-x\left(2x+7\right)\\ =2x^2+10x-3x-15-2x^2-7x\\ =-15\)
Cho biểu thức: A= \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
a, Rút gon biểu thức A
b,Tìm x giá trị A=2
a) (x-1)^2/x-1 + (x+1)^2/x+1 - 3
= x-1 + x+1 - 3
= 2x - 3
b) Tahy x=2 vào A ta có:
A = 2 . 2 - 3 = 1
Vậy..............
Answer:
\(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
\(ĐKXĐ:x\ne\pm1\)
\(A=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x+1}-3\)
\(=x-1+x+1-3\)
\(=2x-3\)
Thay vào ta được:
\(2.2-3\)
\(=4-3\)
\(=1\)
Cho biểu thức: A= \(\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
a, Rút gon biểu thức A
b,Tìm x giá trị A=2
a)\(ĐKXĐ:x=\pm1\)
\(A=\frac{x^2-2x+1}{x-1}+\frac{x^2+2x+1}{x+1}-3\)
\(=\frac{\left(x-1\right)^2}{x-1}+\frac{\left(x+1\right)^2}{x-1}-3\)
\(=x-1+x+1-3\)
\(=2x-3\)
b,Để A=2 thì
2x-3=2
<=>2x=5
<=>x=5/2(t/m ĐKXĐ)
Cho biểu thức \(A=\left(\frac{x^3-1}{x^2-x}+\frac{x^2-4}{x^2-2x}-\frac{2-x}{x}\right):\frac{x+1}{x}\)
Rút gon biểu thức
Hộ em ạ T.T hứa sẽ hậu tạ 12sp '-'
\(A=\left(\frac{x^2+x+1}{x}+\frac{x+2}{x}-\frac{2-x}{x}\right)\frac{x}{x+1}=\frac{x^2+3x+1}{x+1}\)
Ồ kê may:)) Mình làm đúng rồi, cảm ơn đã check :))
Rút gon biểu thức \(A=\frac{x^2+2x}{x^2-4x+4}:\left(\frac{x+2}{x}-\frac{1}{2-x}+\frac{6-x^2}{x^2-2x}\right)\)
Cho biểu thức: G= (x-\(\sqrt{x}\)+2/x-1 -1/\(\sqrt{x}\)-1)* x+2\(\sqrt{x}\)+1/2x-2\(\sqrt{x}\) ( với x>0; x≠1)
rút gon G
Ta có: \(G=\left(\dfrac{x-\sqrt{x}+2}{x-1}-\dfrac{1}{\sqrt{x}-1}\right)\cdot\dfrac{x+2\sqrt{x}+1}{2x-2\sqrt{x}}\)
\(=\dfrac{x-\sqrt{x}+2-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\cdot\dfrac{\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\left(\sqrt{x}-1\right)^2\cdot\left(\sqrt{x}+1\right)^2}{2\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)^2}\)
\(=\dfrac{\sqrt{x}+1}{2\sqrt{x}}\)
Rút gon phân thức a)8x^3+y^3/y^3+2xy^2+y^2-4x^2 b)x^2-2x-8/2x^2+9x+10 c)6x-x^2-5/5x^6-x^7. d)x^3+64/2x^3-8x^2+32x. e) x^2+3xy+2y^2/x^3+2x^2y-xy^2-2y^3
Cho biểu thức
\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\) với x khác + - 3
a)Rút gon biểu thức A
b)Tìm x để A<2
c)Tìm x nguyên để A nguyên
a) \(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
\(\Leftrightarrow A=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{2x^2-6x}{\left(x+3\right)\left(x-3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(\Leftrightarrow A=\frac{3x^2-13x}{x^2-9}\)
\(A=\frac{2x}{x+3}-\frac{x+1}{3-x}-\frac{3-11x}{x^2-9}\)
a) ĐK : x ≠ ±3
\(=\frac{2x}{x+3}+\frac{x+1}{x-3}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}+\frac{\left(x+1\right)\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x}{\left(x-3\right)\left(x+3\right)}+\frac{x^2+4x+3}{\left(x-3\right)\left(x+3\right)}-\frac{3-11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{2x^2-6x+x^2+4x+3-3+11x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x^2+9x}{\left(x-3\right)\left(x+3\right)}\)
\(=\frac{3x\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}=\frac{3x}{x-3}\)
b) Để A < 2
=> \(\frac{3x}{x-3}< 2\)
<=> \(\frac{3x}{x-3}-2< 0\)
<=> \(\frac{3x}{x-3}-\frac{2x-6}{x-3}< 0\)
<=> \(\frac{3x-2x+6}{x-3}< 0\)
<=> \(\frac{x+6}{x-3}< 0\)
Xét hai trường hợp :
1. \(\hept{\begin{cases}x+6>0\\x-3< 0\end{cases}}\Leftrightarrow\hept{\begin{cases}x>-6\\x< 3\end{cases}}\Leftrightarrow-6< x< 3\)
2. \(\hept{\begin{cases}x+6< 0\\x-3>0\end{cases}}\Leftrightarrow\hept{\begin{cases}x< -6\\x>3\end{cases}}\)( loại )
Vậy -6 < x < 3