Chứng minh: m+3m2+2m3 chia hết cho 6 với m là số tự nhiên
chứng minh: m3 +11m chia hết cho 6 với m là số tự nhiên
ta có
m^3+11m
=m^3+12m-m
=12m+m^3-m
=12m+m(m^2-1)
=12m+m.(m+1).(m-1)
xét tích m(m+1)(m-1) là tích của 3 số nguyên liên tiếp
mà tích 3 số nguyên liên tiếp luôn chia hết cho 6
=>m(m-1)(m1) chia hết cho 6 (1)
do 12 chia hết cho 6 => 12m chia hết cho 6(2)
từ (1) và (2) => m(m-1)(m+1)+12m chia hết cho 6
<=> m^3+11m chia hết cho 6
vậy m^3+11m chia hết cho 6 (đpcm)
t
a) Nếu tổng của hai số tự nhiên là một số lẻ thì tích của chúng có chia hết cho 2 không.
b) Chứng tỏ rằng với hai số tự nhiên bất kỳ khi chia cho m có cùng số dư thì hiệu của chúng chia hết cho m và ngược lại.
c) Chứng tỏ rằng với 6 số tự nhiên bất kỳ luôn có ít nhất hai số tự nhiên mà hiệu của chúng chia hết cho 5.
d) Chứng tỏ rằng tổng của 5 số tự nhiên liên tiếp không chia hết cho 4.
e) Chứng tỏ rằng tổng của 2 số chẵn liên tiếp luôn chia hết cho 8.
g) Cho 4 số tự nhiên không chia hết chia hết cho 5 , khi chia cho 5 được những số dư kháu nhau . Chứng minh rằng tổng của chúng chia hết cho 5.
h) Chứng minh rằng không có số tự nhiên nào mà chia cho 15 dư 6 còn chia 9 thì dư 1.
nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!
1 Cho số tự nhiên n với n > 2. Biết 2n - 1 là 1 số nguyên tố. Chứng tỏ rằng số 2n + 1 là hợp số
2 Cho 3 số: p, p+2014.k, p+2014.k là các số nguyên tố lớn hơn 3 vá p chia cho 3 dư 1. Chứng minh rằng k chia hết cho 6
3 Cho 2 số tự nhiên a và b, trong đó a là số lẻ. Chứng minh rằng 2 số a và a.b+22013là 2 số nguyên tố cùng nhau
4 Cho m và n là các số tự nhiên, m là số lẻ. Chứng tỏ rằng m và mn+8 là 2 số nguyên tố cùng nhau
5 Cho A=32011-32010+...+33-32+3-1. Chứng minh rằng a=(32012-1) : 4
6 Cho số abc chia hết cho 37. Chứng minh rằng số bca chia hết cho 37
Chứng minh rằng nếu m^2+m.n+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
chứng minh rằng nếu m^2+mn+n^2 chia hết cho 9 với m,n là các số tự nhiên thì m,n chia hết cho 3
**** m chia hết cho 3 => m^2 chia hết cho 3 ( m^2 = m.m )
Tt: n^2 chia hết cho 3
=> m^2 + n^2 chia hết cho 3
**** định lí đảo
m^2 + n^2 chia hết cho 3
Xét: a chia 3 có 3 trườg hợp số dư: 0;1;2 => a^2 có 2 trườg hợp số dư là 0;1 < cm: đặt a = 3k + x với x là các trườg hợp số dư. sau đó tìm được số dư khi bình phương a >
=> m^2 và n^2 cũng có các khả năng số dư đó khi chia cho 3
Xét các trườg hợp:
m^2 và n^2 chia 3 cùng dư 1 => m^2 + n^2 chia 3 dư 2 => loại
m^2 và n^2 1 số chia 3 dư 0 và 1 số chia 3 dư 1 => m^2 + n^2 chia 3 dư 1 => loại
=> m^2 và n^2 cùng chia hết cho 3
hay m và n cùng chia hết cho 3
Bài 5:Cho a chia hết cho c và b chia hết cho c .Chứng minh rằng ma+nb chia hết cho c , ma - nb chia hết cho c với m,n e N
Bài 6:Chứng minh rằng
a)Tổng của ba số tự nhiên liên tiếp chia hết cho 3.
b) Tổng của 5 số tự nhiên liên tiếp chia hết cho 5
Bài 7:tìm số tự nhiên n biết
a)n+10 chia hết cho n
b)n+16 chia hết cho n+1
c)3n+24 chia hết cho n+2
giúp m với tối m phải nộp r
a, cho a và b chia hết cho 7 . chứng minh rằng ax+by chia hết cho 7 với (x;y là số tự nhiên)
b, nếu chia số a cho số b được số dư là r chứng minh rằng nếu a và b chia hết cho m thì r chia hết cho m
1) Cho 2 số tự nhiên a và b, biết 2 chia cho 6 dư 2 và b chia cho 6 dư 3. . Chứng minh rằng ab chia hết cho 6.
2) Cho a và b là 2 sớ tự nhiên, biết a chia cho 5 dư 2 và b chia cho 5 dư 3 . Chứng minh rằng ab chia cho 5 dư 1.
3) Cho 2 số tự nhiên a và b, biết a chia cho 6 dư 3 và ab chia hết cho 6. . Hỏi b chia cho 6 có số dư là bao nhiêu? Chứng minh.
4) Chứng minh rằng: n (2n - 3) - 2n (n + 1) luôn chia hết cho 5 với n là số tự nhiên.
5) Chứng minh rằng với mọi số nguyên n biểu thức (n - 1) (n + 4) - (n - 4) (n + 1) luôn chia hết cho 6.
Cho a là số tự nhiênchia 6 dư 2 và b là số tự nhiên chia 6 dư 3. Chứng minh axb chia hết cho 6
Cho m và n là các số tự nhiên sao cho m, m+n, m+2n đều là các số nguyên tố lớn hơn 3. Chứng minh rằng: n chia hết cho 6