cho : x,y,z ≥0 và x+y+z≤3
tìm min của biểu thức: A=11+x+11+y+11+z
Cho các số thực dương x,y,z thỏa mãn x+y+z=3. Tìm min
\(A=\frac{x^{20}}{y^{11}}+\frac{y^{20}}{z^{11}}+\frac{z^{20}}{x^{11}}\)
cho : x,y,z ≥0 và x+y+z≤3
tìm min của biểu thức: A=\(\dfrac{1}{1+x}+\dfrac{1}{1+y}+\dfrac{1}{1+z}\)
Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$
$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$
$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$
Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$
$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$
Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$
Dự đoán điểm rơi \(x=y=z=1\)
Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)
Ta cần ghép Cô-si \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)
Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)
Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)
Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)
Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)
Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)
Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)
Bài 1 .
a) Tìm y để giá trị biểu thức B = I y- 3 I + 50 Đạt Min
b) Tìm x ; y để giá trị biểu thức
C = I x - 100 I + I y + 200 I -1 Đạt Min
Bài 2 : Tìm x \(\in\) Z biết:
( x- 3 ) + ( x - 2 ) + ( x - 1 ) + ... + 10 + 11 = 11
Bài 3 : Tìm x ; y \(\in\) Z biêt :
xy + 3x -7y = 21
Bài 1: a) min B=50 (vì |y-3|>=0) khi |y-3|=0=> y=3
b) tương tự min C=-1 khi x=100 và y=-200
Cho z,y,z thỏa mãn: x + 2y - z = 4
2x+ y + z = 11
Tìm min của biểu thức: S = x2 + y2 + z2
Cho x, y, z thỏa mãn (1/x+1/y+1/z)/(1/x+y+z)=1. tính giá trị biểu thức B=(x^21+y^21)(y^11+z^11)(z^2017+x^2017)
\(\frac{\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)}{\frac{1}{x+y+x}}=1\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{x}\right)=1\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}\right)+\left(\frac{1}{z}-\frac{1}{x+y+z}\right)=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)\(\Leftrightarrow\left(x+y\right)\left[z\left(x+y+z\right)+xy\right]=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
B=\(\left(x+y\right)\left(y+z\right)\left(z+x\right).M=0\)
Phạm Văn Chí
1 nha bạn
k tui nha
thank
ai giúp em với gấp lắm rồi: mong các bác cho lời giải ko ghi đáp án chống đối
1.Tìm các số hữu tỉ x,y,z biết:
a) x.(x-y+z)=11 ; y.(y-z-x)=25 ; z.(z+x-y)=35
b) (x+2)^2 + (y-3)^4 + (z-5)^6=0
2. So sánh A và B biết
a) A=-1/2011 - 3/11^2 - 5/11^3 - 7/11^4 và B= -1/2011 - 7/11^2 - 5/11^3 - 3/11^4
b) A= 2006/2007 - 2007/2008 + 2008/2009 - 2009/2010 và B= -1/2006.2007 - 1/2008.2009
mong mấy bạn giúp mình mai mình nộp rôì ko đùa đâu
ai lam guip toi cau nay voi mai toi nop bai roi
so sanh 2 phan so sau bang cach nahnh nhat: 2007/2008 voi 2008/2009
Cho x+y+z=2017. Tìm min của \(\dfrac{x^{20}}{y^{11}}\)+ \(\dfrac{y^{20}}{z^{11}}\)+\(\dfrac{z^{20}}{x^{11}}\)
Cho x,y,z thỏa mãn điều kiện 2x+y+z=11 và x-2/2=y-3/3=z-4/4
Hãy tính giá trị của biểu thức M=x18y4z
Online Math là nhất
Online Math như cặc
Giá trị nhỏ nhất của A = -40
x = 2035
Giá trị nhỏ nhất của B = -207
x = 1
Giá trị nhỏ nhất của C = 4
x = -1
Giá trị nhỏ nhất của D = -2
x ∈ {-2;-1}
Giá trị nhỏ nhất của E = -2021
x = 2019
y = -2020