Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoàng Anh Quân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 18:45

Do C thuộc trục tung nên tọa độ có dạng \(C\left(0;c\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-4;-1\right)\\\overrightarrow{AC}=\left(-1;c-2\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại A \(\Rightarrow\overrightarrow{AB}.\overrightarrow{AC}=0\)

\(\Rightarrow4-\left(c-2\right)=0\Rightarrow c=6\)

\(\Rightarrow C\left(0;6\right)\)

\(\Rightarrow\overrightarrow{AC}=\left(-1;4\right)\Rightarrow\left\{{}\begin{matrix}AB=\sqrt{\left(-4\right)^2+\left(-1\right)^2}=\sqrt{17}\\AC=\sqrt{\left(-1\right)^2+4^2}=\sqrt{17}\end{matrix}\right.\)

\(\Rightarrow S_{ABC}=\dfrac{1}{2}AB.AC=\dfrac{17}{2}\)

37. Lê Huyền Trâm 10J
Xem chi tiết
Trần Đức 	Minh
13 tháng 1 2022 lúc 21:22

tui mới lớp 6

Khách vãng lai đã xóa
Trần Đức 	Minh
13 tháng 1 2022 lúc 21:25

mày dám

Khách vãng lai đã xóa
Hà Phương Anh
13 tháng 1 2022 lúc 21:31

Thành phần nào nói bậy thế. Lớp 12 mà nói thế trước mặt cô là vào Sổ Đầu Bài và viết Bản Kiểm Điểm đấy...

Khách vãng lai đã xóa
Hoàng Anh Quân
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 12 2022 lúc 18:41

Do C thuôc trục hoành nên tọa độ có dạng \(C\left(c;0\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AC}=\left(c+2;-4\right)\\\overrightarrow{BC}=\left(c-8;-4\right)\end{matrix}\right.\)

Do tam giác ABC vuông tại C \(\Rightarrow\overrightarrow{AC}.\overrightarrow{BC}=0\)

\(\Rightarrow\left(c+2\right)\left(c-8\right)+16=0\)

\(\Rightarrow c^2-6c=0\Rightarrow\left[{}\begin{matrix}c=0\\c=6\end{matrix}\right.\)

Vậy có 2 điểm C thỏa mãn là \(C\left(0;0\right)\) và \(C\left(6;0\right)\)

Bùi Đức Tiến
Xem chi tiết
Nguyễn Huy Tú
13 tháng 3 2023 lúc 20:05

Ta có B(a;2-a) ; C(b;8-b)

Để tam giác ABC vuông cân tại A

\(\left\{{}\begin{matrix}\overrightarrow{AC}.\overrightarrow{AB}=\overrightarrow{0}\\\overrightarrow{AC}=\overrightarrow{AB}\end{matrix}\right.\) bạn thay vào giải hpt bằng p2 thế nhé 

Măng Cụt
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 23:09

1: \(\overrightarrow{AB}=\left(-10;-5\right)\)

\(\overrightarrow{AC}=\left(-6;3\right)\)

\(\overrightarrow{BC}=\left(4;8\right)\)

Vì \(\overrightarrow{AC}\cdot\overrightarrow{BC}=0\) ΔABC vuông tại C

\(AC=\sqrt{\left(-6\right)^2+3^2}=3\sqrt{5}\)

\(BC=\sqrt{4^2+8^2}=4\sqrt{5}\)

Do đó: \(S_{ABC}=\dfrac{AC\cdot BC}{2}=\dfrac{3\sqrt{5}\cdot4\sqrt{5}}{2}=3\sqrt{5}\cdot2\sqrt{5}=30\)

 

mai mai mai
Xem chi tiết
Akai Haruma
28 tháng 9 lúc 16:11

Lơ giải:
Gọi tọa độ điểm $C$ là $(a;b)$.

Vì $ABC$ là tam giác cân tại $B$ nên: 

$AB=BC\Rightarrow AB^2=BC^2$

$\Rightarrow (3-3)^2+(4-0)^2=(a-3)^2+(b-4)^2$

$\Rightarrow (a-3)^2+(b-4)^2=16$ (1)

Lại có: $ABC$ vuông cân tại $B$ nên theo định lý Pitago:

$AB^2+BC^2=AC^2$
$\Rightarrow 2AB^2=AC^2$

$\Rightarrow AC^2= 2.16=32$

$\Rightarrow (a-3)^2+b^2=32$ (2)

Từ $(1); (2)\Rightarrow b^2-(b-4)^2=32-16$

$\Rightarrow 4(2b-4)=16$

$\Rightarrow b=4$

$(a-3)^2=32-b^2=32-4^2=16$

$\Rightarrow a-3=4$ hoặc $a-3=-4$

$\Rightarrow a=7$ hoặc $a=-1$. Mà $a<0$ nên $a=-1$

Vậy tọa độ điểm $C$ là $(-1, 4)$

 

 

37. Lê Huyền Trâm 10J
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 20:59

a: \(\overrightarrow{AB}=\left(-3;4\right)\)

\(\overrightarrow{AC}=\left(8;6\right)\)

Vì \(\overrightarrow{AB}\cdot\overrightarrow{AC}=0\) nên ΔABC vuông tại A 

c: Tọa độ trọng tâm G là:

\(\left\{{}\begin{matrix}x_G=\dfrac{1-2+9}{3}=\dfrac{8}{3}\\y_G=\dfrac{2+6+8}{3}=\dfrac{16}{3}\end{matrix}\right.\)

Thọ Lê
Xem chi tiết
Khang
Xem chi tiết