Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần anh đại
Xem chi tiết
Đinh Đức Hùng
6 tháng 8 2017 lúc 12:56

\(A=n^4+2n^3+2n^2+2n+1\)

\(=\left(n^4+2n^3+n^2\right)+\left(n^2+2n+1\right)\)

\(=n^2\left(n^2+2n+1\right)+\left(n^2+2n+1\right)\)

\(=n^2.\left(n+1\right)^2+\left(n+1\right)^2\)

\(=\left(n^2+1\right)\left(n+1\right)^2\)

Vì \(n^2< n^2+1< \left(n+1\right)^2\) nên \(n^2+1\) không thể là số chính phương

\(A=\left(n^2+1\right)\left(n+1\right)^2\)không thể là số chính phương (đpcm)

Kim Nhung
Xem chi tiết
Nguyễn Hoàng Pháp Quang
16 tháng 3 2023 lúc 22:00

Lỡ có sai sót thì thông cảm giúp mình nha:3

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
7 tháng 11 2017 lúc 2:47

A = n 4   –   2 n 3   –   n 2  +2n = (n – 2)(n – 1)n(n + 1) là tích của 4 số nguyên liên tiếp do đó  A ⋮ 24 .

super saiyan vegeto
Xem chi tiết
KAKA NGÔ
Xem chi tiết
Thắng Nguyễn
31 tháng 3 2016 lúc 20:05

Ta có : A = n2(n2 +2n + 1) + ( n2 + 2n + 1) = (n2+1).(n+1)2
Vì n2 + 1 không phải là số chính phương nên A không phải là số chính phương.

Hằng Ngốk
Xem chi tiết
Nguyễn An
Xem chi tiết
Akai Haruma
14 tháng 10 2021 lúc 23:28

Lời giải:

$n^4+3n^3+4n^2+3n+1=(n+1)^2(n^2+n+1)$

Nếu đây là scp thì $n^2+n+1$ cũng phải là scp

Đặt $n^2+n+1=t^2$ với $t$ tự nhiên 

$\Leftrightarrow 4n^2+4n+4=(2t)^2$

$\Leftrightarrow (2n+1)^2+3=(2t)^2$

$\Leftrightarrow 3=(2t-2n-1)(2t+2n+1)$

$\Rightarrow 2t+2n+1=3; 2t-2n-1=1$

$\Rightarrow n=0$ (trái giả thiết)

Vậy có nghĩa là $n^2+n+1$ không là scp với mọi $n\in\mathbb{N}^*$

$\Rightarrow n^4+3n^3+4n^2+3n+1$ không là scp với mọi $n\in\mathbb{N}^*$

Ta có đpcm.

zZz Công serenity zZz
Xem chi tiết
nguyễn ngọc thiên  thanh
Xem chi tiết
Jen Jeun
19 tháng 6 2015 lúc 12:52

a) A có số số hạng là: (2n+1-1) :2 +1 = n+1 (số)

=> \(A=\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                                           \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)

=> A là số chính phương

b) B có số số hạng là : (2n-2):2+1= n (số)

=> \(B=\frac{\left(2n+2\right).n}{2}=\frac{2\left(n+1\right).n}{2}=\left(n+1\right).n\)

=> B không là số chính phương.

Huỳnh Thị Minh Huyền
3 tháng 12 2015 lúc 16:44

A có số số hạng là:

(2n+1-1):2+1=n+1(số)

=>\(\frac{\left(2n+1+1\right).\left(n+1\right)}{2}=\frac{\left(2n+2\right).\left(n+1\right)}{2}=\frac{2\left(n+1\right)\left(n+1\right)}{2}\)

                                                       \(=\left(n+1\right).\left(n+1\right)=\left(n+1\right)^2\)  

=>A là số chính phương