cho B=n^2+n+3(x thuộc N) tìm số dư khi chia B cho 2
a, Tìm chữ số tận cùng của số tự nhiên a để có ( a mũ 2 + 1 ) chia hết cho 2.
b, Cho n là số tự nhiên lẻ, tìm số dư khi chia n mũ 2 cho 8
c, Cho a,b thuộc N, chứng tỏ rằng ab . ( a+b) chia hết cho 2
d, Tìm x,y thuộc N biết xy. (x+y) = 570319
2. Tìm n thuộc Z để
a, 2n^2 -n-7 chia hết cho n-2
b, 25n^2 - 97n +11 chia hết cho n-4
1.Tìm a,b biết x^3 + ax +b chia x+1 dư 7; chia cho x-3 dư -5
Câu 1.
Tìm a,b để \(x^3+ax+b\)chia \(x+1\)dư 7 và chia cho \(x-3\)dư -5.
Thương của phép chia đa thức bậc 3 \(x^3+ax+b\)cho \(x+1\)là 1 đa thức bậc 2 có hệ số bậc 2 bằng 1, tổng quát ở dạng: \(x^2+mx+n\).Số dư của phép chia này là 7 nên ta có:\(x^3+ax+b=\left(x+1\right)\left(x^2+mx+n\right)+7\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(m+1\right)x^2+\left(m+n\right)x+n+7\mid\forall x\in R\)
Để 2 đa thức này bằng nhau với mọi x thuộc R thì hệ số các bậc phải bằng nhau. Đồng nhất chúng ta có:
\(\hept{\begin{cases}m+1=0\\m+n=a\\n+7=b\end{cases}\Rightarrow\hept{\begin{cases}m=-1\\n=a+1\\b=a+1+7\end{cases}\Rightarrow}b=a+8\mid\left(1\right)}\)
Tương tự với phép chia \(x^3+ax+b\)cho \(x-3\)dư -5.\(x^3+ax+b=\left(x-3\right)\left(x^2+px+q\right)-5\mid\forall x\in R\)
\(\Leftrightarrow x^3+ax+b=x^3+\left(p-3\right)x^2+\left(q-3p\right)x-\left(3q+5\right)\mid\forall x\in R\)
\(\Rightarrow\hept{\begin{cases}p-3=0\\q-3p=a\\-\left(3q+5\right)=b\end{cases}\Rightarrow\hept{\begin{cases}p=3\\q=a+9\\b=-\left(3\left(a+9\right)+5\right)\end{cases}\Rightarrow}b=-3a-32\mid\left(2\right)}\)
Từ (1) và (2) ta có:\(\hept{\begin{cases}b=a+8\\b=-3a-32\end{cases}\Rightarrow a+8=-3a-32\Rightarrow\hept{\begin{cases}a=-10\\b=-2\end{cases}}}\)
Vậy với \(a=-10;b=-2\)thì đa thức đã cho trở thành \(x^3-10x-2\)chia cho \(x+1\)dư 7 và chia cho \(x-3\)dư -5.Viết kết quả các phép chia này ta được:\(\hept{\begin{cases}x^3-10x-2=\left(x+1\right)\left(x^2-x-9\right)+7\\x^3-10x-2=\left(x-3\right)\left(x^2+3x-1\right)-5\end{cases}\mid\forall x\in R}\)
Bài 5:Tìm số tự nhiên a nhỏ nhất sao cho a chia 5 dư 3,chia 7 dư 4
Bài 6:Một số chia 7 dư 3,chia 17 dư 12,chia 23 dư 7.Hỏi số đó chia cho 2737 dư bao nhiêu?
Bài 7:Tìm số tự nhiên n biết khi chia n cho 147 và 193 có số dư lần lượt là 17 và 11.
Bài 11:a,Tìm các số nguyên x sao cho (4x-3) chia hết cho (x-2)
b,Tìm n biết 5n+7 chia hết cho 3n+2
c,Tìm n thuộc Z,biết 3n+2 chia hết cho n-1
HELP ME!!!!!!!!!!!!!!!!!!!giải rõ ra nhé
lì xì tết thì phải vừa nhiều vừa khó chứ
duyệt đi
Bạn ơi, bạn hỏi từng câu thôi tớ mói trả lời đc chứ
tìm số tự nhiên nhỏ nhất có 3 chư số sao cho khi chia số đó cho 6 dư 3 chia cho 7 dư 4
tìm x biết 2.x +5 chia hết cho x+2[x thuộc n]
bài 2)
theo đề ta có : \(\frac{2x+5}{x+2}=2+\frac{1}{x+2}\)
để 2x+5 chia hết x+2 thì :x+2 là Ư(1)={1;-1}
Xét TH:
x+2=1=>x=-1(loại)
x+2=-1=> x=-3 (loại)
vậy k có giá trị x nào là só tự nhiên để thỏa đề bài
Cho 2 số tự nhiên a và b. a chia 5 dư 1, b chia 5 dư 2.Tìm số r (r thuộc N) khi chia \(a^2+b^2,a^2-b^2,a^3+b^3,a^3-b^3\)cho 5
bài 1 cho a thuộc N, biết khi đem a chia cho 30 thì dư 18
a) Hãy biểu diễn số a
b) Hỏi a có chia hết cho 2;3;5;6 không ? Vì sao ?
bài 2 cho x=180a+45b với a,b thuộc N. Chứng minh rằng x chia hết cho 5 và 9 với mọi a, b
bài 3 tìm STN n để
a) 18+ n chia hết cho n
b) 4n+28 chia hết cho n
a, Cho A = 1 + 3 + 32 +...+ 3100.
Tìm x biết x là số dư của A khi chia cho 13.
b, Tìm m và n biết m là số dư của n khi chia cho 7 còn n là số dư của 2013 cho 57.
c, Tìm BCNN(x, m, n)
Tìm số dư của :
a,1995^n+1996^n+1997^n với n thuộc N khi chia cho 2
b,2014^2015-2013^2014 khi chia cho 10
Cho A= 3 + 3^2+3^3 + ...+3^n (n thuộc N*)
a,Với n= 2016 chứng minh rằng A chia hết cho 4;A chia hết13;A chia hết 10
b,Với n=101 tìm số dư khi chia A cho 4;13;10
c,Tìm n đê A chia hết cho 40