Cho a,b là hai số thoả mãn điều kiện 2a+3b=5. Chứng minh rằng 2a^2+3b^2>=5
Cho a,b là hai số thoả mãn điều kiện 2a+3b=5. Chứng minh rằng 2a^2+3b^2>5
Ta có
\(a=2,5-1,5b\)
Thế vào ta được BĐT ta được
2b2 - 2b + 1 > 0
<=> (b - 1)2 + b2 > 0 (đúng)
Vậy BĐT là đúng
Cho a,b thuộc N thỏa mãn điều kiện 2a2+a=3b2+b
Chứng minh rằng a-b và 2a+2b+1 đều là số chính phương
Có bổ đề sau: \(a^2=pq\) với \(a,p,q\in Z^+\) và \(\left(p,q\right)=1\) thì p,q là hai số chính phương
\(2a^2-2b^2+a-b=b^2\Leftrightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\)(*)
Gọi d là UWCLN của a-b và 2a+2b+1 ta có từ (*) b chia hết d.
a-b chia hết cho d nên 2a-2b chia hết cho d . Vậy 2a+2b+1-(2a-2b) chia hết d
nên 4b+1 chia hết d mà b chia hết cho d nên 1 chia hết d. Vậy hai số a-b và 2a+2b+1 nguyên tố cùng nhau
Áp dụng bổ đề có đpcm
Chứng minh rằng nếu các số nguyên a,b thỏa mãn điều kiện 2a2+a=3b2+b thì a-b và 2a +2b+1 là các số chính phương.
Làm nhak mk tik cko
Cho các số thực a, b, c thỏa mãn điều kiện : (0 < c < b< a<=3); (2ab <= 2a+3b); (3abc <= ab+3bc+2ca.)
Chứng minh rằng a³ +b³ + c³<= 36.
Cho các thực a,b thoả mãn 2a+3b và 5a-4b đều là các số hữu tỉ. Chứng minh rằng a,b đều là các số hữu tỉ
Ta có: 2a+3b là số hữu tỉ
=> 5(2a+3b)=10a+15b là số hữu tỉ
5a-4b là số hữu tỉ
=> 2(5a-4b)=10a -8b là số hữu tỉ
=> (10a+15b)-(10a-8b)=10a+15b-10a+8b=23b
=> b là số hữu tỉ
=> 3b là số hữu tỉ
=> (2a+3b)-3b =2a là số hữu tỉ
=> a là số hữu tỉ
Cho \(a\) và \(b\) là các số tự nhiên thỏa mãn \(2a^2+2=3b^2+b\). Chứng minh rằng: \(a-b\) và \(3a+3b+1\) là các số chính phương.
Để chứng minh rằng √(a-b) và √(3a+3b+1) là các số chính phương, ta sẽ điều chỉnh phương trình ban đầu để tìm mối liên hệ giữa các biểu thức này. Phương trình ban đầu: 2^(2+a) = 3^(2+b) Ta có thể viết lại phương trình theo dạng: (2^2)^((1/2)+a/2) = (3^2)^((1/2)+b/2) Simplifying the exponents, we get: 4^(1/2)*4^(a/2) = 9^(1/2)*9^(b/2) Taking square roots of both sides, we have: √4*√(4^a) = √9*√(9^b) Simplifying further, we obtain: 22*(√(4^a)) = 32*(√(9^b)) Since (√x)^y is equal to x^(y/), we can rewrite the equation as follows: 22*(4^a)/ = 32*(9^b)/ Now let's examine the expressions inside the square roots: √(a-b) can be written as (√((22*(4^a))/ - (32*(9^b))/)) Similarly, √(3*a + 3*b + ) can be written as (√((22*(4^a))/ + (32*(9^b))/)) We can see that both expressions are in the form of a difference and sum of two squares. Therefore, it follows that both √(a-b) and √(3*a + 3*b + ) are perfect squares.
Cho các số dương a,b,c thoả mãn điều kiện a+b+c=3. Chứng minh rằng: \(\sqrt{2a^2+ab+2b^2}+\sqrt{2b^2+bc+2c^2}+\sqrt{2c^2+ca+2a^2}\ge3\sqrt{5}\)
Cân bằng hệ số:
Giả sư: \(2a^2+ab+2b^2=x\left(a+b\right)^2+y\left(a-b\right)^2\) (ta đi tìm x ; y)
\(=xa^2+x.2ab+xb^2+ya^2-y.2ab+yb^2\)
\(=\left(x+y\right)a^2+2\left(x-y\right)ab+\left(x+y\right)b^2\)
Đồng nhất hệ số ta được: \(\hept{\begin{cases}x+y=2\\2\left(x-y\right)=1\end{cases}\Leftrightarrow}\hept{\begin{cases}2x+2y=4\\2x-2y=1\end{cases}}\Leftrightarrow4x=5\Leftrightarrow x=\frac{5}{4}\Leftrightarrow y=\frac{3}{4}\)
Do vậy: \(2a^2+ab+2b^2=\frac{5}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{5}{4}\left(a+b\right)^2\)
Tương tự với hai BĐT còn lại,thay vào,thu gọn và đặt thừa số chung,ta được:
\(VT\ge\sqrt{\frac{5}{4}}.2.\left(a+b+c\right)=\sqrt{\frac{5}{4}}.2.3=3\sqrt{5}\) (đpcm)
Dấu "=" xảy ra khi a = b =c = 1
1, Cho các số nguyên a,b,c. Chứng minh rằng I 2a-5bI + I 3b - 7c I +I c- 6a I LUÔN LÀ SỐ CHẴN
2, Chứng minh rằng nếu các số a,b,c,d,e thoả mãn điều kiện I a-b I = Ib-c I = Ic-d I = I d-e I = I e-a I thì a=b=c=d=e. HÃY TỔNG QUÁT BÀI TOÁN
Cho a,b là các số tự nhiên thoả mãn 2a^2+a=3b^2+b
C/minh a-b;2a+2b+1 là các số chính phương
Ta có: \(2a^2+a=3b^2+b\Rightarrow2a^2-2b^2+a-b=b^2\)
\(\Rightarrow2\left(a-b\right)\left(a+b\right)+\left(a-b\right)=b^2\)
\(\Rightarrow\left(a-b\right)\left(2a+2b+1\right)=b^2\left(1\right)\)
Đặt \(ƯCLN\left(a-b;2a+2b+1\right)=d\) suy ra:
\(\hept{\begin{cases}\left(a-b\right)⋮d\\2a+2b+1⋮d\end{cases}}\) \(\Rightarrow b^2=\left(a-b\right)\left(2a+2b+1\right)⋮d^2\)
\(\Rightarrow b⋮d\). Lại có:
\(2\left(a-b\right)-\left(2a+2b+1\right)⋮d\Rightarrow-4b-1⋮d\)
\(\Rightarrow1⋮d\Rightarrow d=1\Leftrightarrow a-b\) và \(2a+2b+1\) là hai số nguyên tố cùng nhau \(\left(2\right)\)
Kết hợp \(\left(1\right)\) và \(\left(2\right)\) suy ra:
\(a-b\) và \(2a+2b+1\) là các số chính phương (Đpcm)