A=1-1/2-1/3-1/4-...-1/2012. B = 1/1007+1/1008+1/1009+1/2012 tính (A)/(B)^2013
Các cậu ơi giúp tớ với nka:
Cho A=1-1/2+1/3-1/4+...-1/2012;B=1/1007+1/1008+...+1/2012. Tính (A/B)2013
A=1-(1-1/2)+1/3-(1/2-1/4)+..-(1/1006-1/2012)
A=1-1+1/2+1/3-1/2+1/4+...-1/1006+1/2012
A=(1-1)+(1/2-1/2)+...+(1/1006-1/1006)+1/1007+1/1008+..+1/2012
A=B => (A/B)^2013=1
Học tốt
1-1/2+1/3-1/4+1/5-1/6+...+1/2011-1/2012 / 1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
\(A=1-\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+.........+\dfrac{1}{2011}-\dfrac{1}{2012}+\dfrac{1}{2013}\)
\(B=\dfrac{1}{1007}+\dfrac{1}{1008}+\dfrac{1}{1009}+.........+\dfrac{1}{2013}\)
tính \(\left(A-B\right)^{2013}\)
B=\(\dfrac{1}{1007}+\dfrac{1}{1008}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)- \(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}\right)\)
=\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{1006}+\dfrac{1}{1007}+...+\dfrac{1}{2012}+\dfrac{1}{2013}\right)\)-2\(\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2012}\right)\)
=1-\(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{4}+...-\dfrac{1}{2012}+\dfrac{1}{2013}\)=S
( A-B)2013 =0
Chúc ban học tốt nhé...!
A=1/1*2 + 1/3*4 + 1/5*6 + ... +1/2013*2014
B=1/1008*2014 + 1/1009*2013 + 1/1010*2012+ ... + 1/2014*1008
A=\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2013}-\frac{1}{2014}\)
CHO A=\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
VÀ B=\(\frac{1}{1007}+\frac{1}{1008}+\frac{1}{1009}+...+\frac{1}{2012}\)
HÃY TÍNH\(\left(\frac{A}{B}\right)^{2013}\)
Ta có:\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2011}-\frac{1}{2012}\)
=\(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2011}+\frac{1}{2012}-2.\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2012}\right)\)
=\(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1006}\right)\)
=\(\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)
=>\(\left(\frac{A}{B}\right)^{2013}\)=(\(\frac{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}{\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}}^{ }\))2013=12013=1
tính nhanh giá trị biểu thức
1-1/2+1/3-1/4+1/5-1/6+....+1/2011-1/2012
-------------------------------------------------------------
1006-1006/1007-1007/1008-1008/1009-...-2010/2011-2011/2012
---------- là phần nha
trình bày cách giải
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{4}+...-\frac{1}{2012};\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}\)Tính \(\left(\frac{A}{B}\right)^{2013}\)
Tính B=1/1008*2014 + 1/1009*2013 + 1/1010*2012 + ...+ 1/2014*1008
Cho S = -1/2 + 1/3 - 1/4 +......+1/2011 - 1/2012 + 1/2013 và P = 1/1007 + 1/1008 + .......+ 1/2012 + 1/2013
Tính (S - P)2013
S = 1/3+1/5+1/7+...+1/2013-(1/2+1/4+1/6+...+1/2012)
S = 1/2+1/3+1/4+...+1/2012+1/2013 - 2(1/2+1/4+1/6+...+1/2012)
S = 1/2+1/3+1/4+...+1/2012+1/2013 - (1+1/2+1/3+...+1/1006)
S = 1/1007+1/1008+...+1/2013-1
=> S - P = 1/1007+1/1008+...+1/2013-1-(1/1007+1/1008+...+1/2013)
<=> S - P= -1 <=> (S-P)2013 = -1