Giải phương trình nghiệm nguyên:
\(x^{17}+y^{17}=19^{17}\)
Giải phương trình nghiệm nguyên:
a) \(x!+y!=\left(x+y\right)!\)
b) \(x^{17}+y^{17}=19^{17}\)
a, Khi \(x = 0 ⇔ 0! + y! = y! ⇔ \) Vô lý.
\(\rightarrow x \ne y\)\(\ne 0\)
Khi \(x = y \rightarrow 2 . x! = (2x)! \rightarrow 2x! = x(x+1)(x+2)...(2x)=>x(x+1)(x+2)...(2x) = 2 \rightarrow x = y = 1. \)
Nếu \(x \ne y \rightarrow\) Vì vai trò của \(x,y\) là bình đẳng nên giả sử \(x < y\)
\(\rightarrow x!+y!<2.y!≤(y+1).y!=(y+1)!<(x+y)!\)
Vì \(x \ne y \ne 1 => (x+y) \ne (y+1) \rightarrow (x+y)! \ne (y+1).\)
Vậy \((x,y) = {(1,1)}.\)
b, Chứng minh bằng phương pháp phản chứng:
Giả sử \(x^{17} + y^{17} = 19^{17} \) có nghiệm nguyên.
Không mất tổng quát, giả sử \(x < y\)
\(\rightarrow x^{17} < y^{17} ≤ 19^{17}\)
\(\rightarrow (y+1)^{17} ≤ 19^{17} \)
\(\rightarrow y^{17} + 17y^{16} = 19^{17}\)
Mà \(\rightarrow x > 17 \rightarrow x = y =18.\)
Thử lại không đúng, suy ra giả sử sai.
\(\rightarrow\) Không tồn tại số nguyên thỏa mãn.
From : https://solvee.vn/r/baitap/812003032
Chứng minh rằng phương trình sau không có nghiệm nguyên: \(x^{17}+y^{17}=19^{17}\)
giúp mình với
giả sử: \(x^{17}+y^{17}=19^{17}\) và \(1\le x\le y\le19\)
Ta có: \(19^{17}\ge\left(y+1\right)^{17}\)
\(\Rightarrow19^{17}>y^{17}+17y^{16}\)
Vậy x>17, chỉ có thể x=y=18
Thử lại, x=y=18 không thoả
Vậy pt đã cho không có nghiệm nguyên
Bài 1 : Tìm các số tự nhiên \(x\) thoả mãn : \(2^x+3^x=35\)
Bài 2 : Tìm \(x;y\inℤ^+\) thoả mãn : \(x!+y!=\left(x+y\right)!\)
Bài 3 : Chứng minh rằng phương trình sau không có nghiệm nguyên :
\(x^{17}+y^{17}=19^{17}\)
Bài 1: Bài này số nhỏ nên chỉ cần chặn miền giá trị của \(x\) rồi xét các trường hợp thôi nhé. Ta thấy \(3^x< 35\Leftrightarrow x\le3\). Nếu \(x=0\) thì \(VT=2\), vô lí. Nếu \(x=1\) thì \(VT=5\), cũng vô lí. Nếu \(x=2\) thì \(VT=13\), vẫn vô lí. Nếu \(x=3\) thì \(VT=35\), thỏa mãn. Vậy, \(x=3\).
Bài 2: Nếu \(x=0\) thì pt đã cho trở thành \(0!+y!=y!\Leftrightarrow0=1\), vô lí,
Nếu \(x=y\) thì pt trở thành \(2x!=\left(2x\right)!\) \(\Rightarrow\left(x+1\right)\left(x+2\right)...\left(2x\right)=2\) \(\Leftrightarrow x=1\Rightarrow y=1\)
Nếu \(x\ne y\) thì không mất tính tổng quát, giả sử \(1< y< x\) thì \(x!+y!< 2x!\le\left(x+1\right)x!=\left(x+1\right)!< \left(x+y\right)!\) nên pt đã cho không có nghiệm trong trường hợp này.
Như vậy, \(x=y=1\)
Bài 3: Bổ sung đề là pt không có nghiệm nguyên dương nhé, chứ nếu nghiệm nguyên thì rõ ràng \(\left(x,y\right)=\left(0,19\right)\) là một nghiệm cũa pt đã cho rồi.
Giả sử pt đã cho có nghiệm nguyên dương \(\left(x,y\right)\)
Khi đó \(x,y< 19\). Không mất tính tổng quát ta có thể giả sử \(1< y\le x< 19\). Khi ấy \(x^{17}+y^{17}=19^{17}\ge\left(x+1\right)^{17}=x^{17}+17x^{16}+...>x^{17}+17x^{16}\), suy ra \(y^{17}>17x^{16}\ge17y^{16}\) \(\Rightarrow y>17\). Từ đó, ta thu được \(17< y\le x< 19\) nên \(x=y=18\). Thử lại thấy không thỏa mãn.
Vậy pt đã cho không có nghiệm nguyên dương.
Chị độc giải sau khi em biết làm thôi à.
Giải phương trình nghiệm nguyên
a) \(x^2-3y^2=17\)
b) \(x^2-5y^2=17\)
c) \(15x^2-7y^2=9\)
d) \(x^2+xy+y^2=x^2y^2\)
`x^2-3y^2=17`
`<=>x^2=3y^2+17`
Vì `3y^2 vdots 3`
`17:3` dư 2
`=>3y^2+17:3` dư 2
`=>x^2:3` dư 2
Mà `x^2` là 1 số chính phương nên chia 3 dư 0 hoặc 1
Vậy phương trình vô nghiệm.
giải phương trình :
1/(16√17+17√16)+1/(17√18+18√17)+1/(18√19+19√18)+⋯+1/(x√(x+1)+(x+1)√x)=499/2012
Giải phương trình nghiệm nguyên \(x^2+4y^2+28=17\left(x^4+y^4+14y^2+49\right)\)
mày bị ngáo ak. đã xấu còn bị điên. đã bị điên cò học dốt
y^2+7=z
\(\Leftrightarrow x^2+4z=17\left(x^4+z^2\right)\)Hiển nhiên \(VP\ge VT\) đẳng thức chỉ xẩy ra khi x=z=0
với z=0=> y^2+7=0 vô nghiệm
KL vô nghiệm nguyên
1. Tìm nghiệm nguyên của phương trình : x^2 + ( x+ 1)^2 = y^4 + (y+1)^4
2.tìm ngiệm nguyên của phương trình : x^2 - 3y^2 =17
Tìm nghiệm nguyên của phương trình: \(3\sqrt{x}+17\sqrt{y}=159\)
What the fuck