tim x
2+ x : 3/ 5 = 25 / 4
Tim x : X - (-3)^2/25=(-4/5)^2
a)tim GTNN cua
A=/x-2019/+(y-1)^2020-2
C=/x-3/+/x+4/-5
b)tim GTLN
B=3^2-4/x^2-25/
D=x-4/x-5
a, 1, Vì |x - 2019| ≥ 0 ; (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 ≥ 0 => |x - 2019| + (y - 1)2020 + (-2) ≥ (-2) => A ≥ -2
Dấu " = " xảy ra <=> \(\hept{\begin{cases}x-2019=0\\y-1=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2019\\y=1\end{cases}}\)
Vậy GTNN A = -2 khi x = 2019 và y = 1
2, Ta có: |x - 3| = |3 - x|
Vì |x - 3| + |x + 4| ≥ |x - 3 + x + 4| = |1| = 1
=> C ≥ 1 - 5 => C ≥ -4
Dấu " = " xảy ra <=> (3 - x)(x + 4) ≥ 0
+) Th1: \(\hept{\begin{cases}3-x\ge0\\x+4\ge0\end{cases}\Rightarrow}\hept{\begin{cases}x\le3\\x\ge-4\end{cases}\Rightarrow}-4\le x\le3\)
+) Th2: \(\hept{\begin{cases}3-x\le0\\x+4\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\ge3\\x\le-4\end{cases}}\)(Vô lý)
Vậy GTNN của C = -4 khi -4 ≤ x ≤ 3
b,
1, Vì |x2 - 25| ≥ 0 => 4|x2 - 25| ≥ 0 => 32 - 4|x2 - 25| ≤ 32 = 9
Dấu " = " xảy ra <=> x2 - 25 = 0 <=> x2 = 25 <=> x = 5 hoặc x = -5
Vậy GTLN B = 9 khi x = 5 hoặc x = -5
2, Đk: x ≠ 5
\(D=\frac{x-4}{x-5}=\frac{\left(x-5\right)+1}{x-5}=1+\frac{1}{x-5}\)
Để D mang giá trị lớn nhất <=> \(\frac{1}{x-5}\)mang giá trị lớn nhất <=> x - 5 mang giá trị nhỏ nhất <=> x - 5 = 1 <=> x = 6
=> \(D=1+1=2\)
Vậy GTLN của D = 2 khi x = 6
5(x-2)^2+2(x-3)^2-8(x+4)^2 tim gtln
x^4-7x^2+4x+25
(x+3)^4+(x-7)^4
Gấp gáp chi em cuộc sống vẫn rực rỡ sắc màu
Chim vẫn reo ca và môi hôn đang đứng đợi
Hoa vẫn nở và xuân thì đương tới
Hãy trải lòng xao xuyến với tình yêu.
1 tim x
2346:(25+x)=23
2(x-3)+5(x+4)=49
(2x-10)3.251007=52.52015
2346 : (25 + x) = 23
=> 25 + x = 2346 : 23 = 102
=> x = 102 - 25 = 77
Vậy x = 77
2(x-3) + 5(x+4) = 49
=> 2x - 6 + 5x + 20 = 49
=> 7x + (20 - 6) = 49
=> 7x + 14 = 49
=> 7x = 49 - 14 = 35
=> x = 35 : 7 = 5
Vậy x = 5
(2x-10)3 . 251007 = \(5^2.5^{2015}\)
\(\left(2x-10\right)^3.5^{2014}=5^{2014}.5^3\)
\(\left(2x-10\right)^3=5^3\)
2x - 10 = 5
=> 2x = 5 + 10 = 15
=> x = 15 2 = 7,5
Vậy x = 7,5
1. a. 2346:(25+x)=23
=> 25+x=2346:23
=> 25+x=102
=> x=102-25
=> x=77
b. 2(x-3)+5(x+4)=49
=> 2x-6+5x+20=49
=> 7x+14=49
=> 7x=49-14
=> 7x=35
=> x=35:7
=> x=5
c. (2x-10)3.251007=52.52015
=> (2x-10)3.(52)1007=52017
=> (2x-10)3.52014=52017
=> (2x-10)3=52017:52014
=> (2x-10)3=53
=> 2x-10=5
=> 2x=5+10
=> 2x=15
=> x=15:2
=> x=7,5
Tim x, so ngoai ty, trung ti
a, 3 : (9/4) = 3/4 : (6*x)
b, 4,5 : 0,3 = (5*0,09) : (0,01 * x)
d, (1/9 * x) = 7/4 : 2/25
e, -2/x= -x/8/25
a)
\(3:\left(\dfrac{9}{4}\right)=\dfrac{3}{4}:\left(6.x\right)\\ \Rightarrow3.6.x=\dfrac{3}{4}.\dfrac{9}{4}\\ x=\dfrac{3}{4}.\dfrac{9}{4}.\dfrac{1}{3}.\dfrac{1}{6}\\ x=\dfrac{3}{4.4.2}\\ x=\dfrac{3}{32}\)
b)
\(4,5:0,3=\left(5.0,09\right):\left(0,01.x\right)\\ 0,01.x.4,5=5.0,09.0,3\\ x=5.\dfrac{9}{100}.\dfrac{3}{10}.100.\dfrac{10}{45}\\ x=3\)
d)
\(\left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}:\dfrac{2}{25}\\ \left(\dfrac{1}{9}.x\right)=\dfrac{7}{4}.\dfrac{25}{2}\\ x:\dfrac{7}{4}=\dfrac{25}{2}:\dfrac{1}{9}\\ x=\dfrac{25}{2}.9.\dfrac{7}{4}\\ x=\dfrac{1575}{8}\\ x=196\dfrac{7}{8}\)
e)
\(\dfrac{-2}{x}=\dfrac{-x}{\dfrac{8}{25}}\\ -x.x=-2.\dfrac{8}{25}\\ -x^2=-\dfrac{16}{25}=-\dfrac{4^2}{5^2}\\ -x^2=-\left(\dfrac{4}{5}\right)^2\\ \Rightarrow x=\dfrac{4}{5}\)
Chúc bạn học tốt
tim x thuoc z
1)26-|x+9|=-13
2)|x+7|-13=25
tim x biet
1)123-3.(x+4)=23
2)720:[41-(2x-5)]=23.5
Tìm x thuoc z:
1) \(26-\left|x+9\right|=-13\)
\(\Leftrightarrow\left|x+9\right|=26-\left(-13\right)\)
\(\Leftrightarrow\left|x+9\right|=39\)
\(\Leftrightarrow\left[{}\begin{matrix}x+9=39\\x+9=-39\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=39-9=30\\x=-39-9=-48\end{matrix}\right.\)
Vậy: \(x\in\left\{30;-48\right\}\)
2) \(\left|x+7\right|-13=25\)
\(\Leftrightarrow\left|x+7\right|=25+13=38\)
\(\Leftrightarrow x+7\in\left\{38;-38\right\}\)
\(\Leftrightarrow x\in\left\{31;-45\right\}\)
Vậy:.................
tim x biet
\(1)123-3.\left(x+4\right)=23\)
\(\Leftrightarrow3\left(x+4\right)=123-23\)
\(\Leftrightarrow3\left(x+4\right)=100\)
\(\Leftrightarrow x+4=\frac{100}{3}\)
\(\Leftrightarrow x=\frac{100}{3}-4=\frac{100-12}{3}=\frac{88}{3}\)
Vậy:................
2) Tương tự
tim x biet
(-25)-(5.x-3)=4
5.x-6=20-(12-6)
-2.x-40=(5-x)-(-15+60)
(-25)-(5.x-3)=4
5.x-3 = -25 - 4
5.x-3=-29
5.x=-26
x=-26/5
x=-5,2
5.x-6=20-(12-6)
5.x-6=20-6
5.x-6=14
5.x=20
x=20:5
x=4
vậy x=4
1/
-25-(5x-3)=4
-25-4=5x-3
-25-4+3=5x
5x= -26
x= -26/5
2/
5x-6=20-(12-6)
5x = 20-12+6+6
5x = 20
x = 20/5 = 4
3/
-2x -40 = (5-x) -(-15+60
-2x -40 = 5-x +15-60
-2x +x = 5+15-60+40
-x = 0
x=0
Tim x,biết:
a,15 - 5.(x + 4) = - 12 - 3
b, ( 7 - x ) - ( 25 + 7) = - 25
c, | x + 2 | = 0
d, | x + 3 | + 7 - ( - 2)
e, | x - 5| = | - 7 |
g, - x - 20-(8 - 2x) = (-12-3)
a) <=> 15-5x-20=-12-3
<=> -5x=-12-3-15+20=-10
=>x=-10:(-5)=2
b)<=>7-x-25-7=-25
<=> -x=-25-7+25+7=0 =>x=0
c) /x+2/=0 => x+2=0 =>x=-2
d) sai đề
e)<=> /x-5/ = 7
<=> \(\orbr{\begin{cases}x-5=7\\x-5=-7\end{cases}}\)
<=> \(\orbr{\begin{cases}x=12\\x=-2\end{cases}}\)
g) <=> -x-20-8+2x=-15
<=> x=-15+20+8=13
tim x
x^2-5x-4(x-5)=0
2x(x+6)=7x+42
x^3-5x^2+x-5=0
x^4-2x^3+10x^2-20x=0
(2x-3)-x^2+10x-25=0
\(x^2-5x-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(x\left(x-5\right)-4\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x-4\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x-5=0\\x-4=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=5\\x=4\end{cases}}\)
Vậy....
\(2x\left(x+6\right)=7x+42\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7x-42=0\)
\(\Leftrightarrow\)\(2x\left(x+6\right)-7\left(x+6\right)=0\)
\(\Leftrightarrow\)\(\left(x+6\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x+6=0\\2x-7=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=-6\\x=\frac{7}{2}\end{cases}}\)
Vậy......
\(x^3-5x^2+x-5=0\)
\(\Leftrightarrow\)\(x^2\left(x-5\right)+\left(x-5\right)=0\)
\(\Leftrightarrow\)\(\left(x-5\right)\left(x^2+1\right)=0\)
\(\Leftrightarrow\)\(x-5=0\)
\(\Leftrightarrow\)\(x=5\)
\(x^4-2x^3+10x^2-20x=0\)
\(\Leftrightarrow\)\(x^3\left(x-2\right)+10x\left(x-2\right)=0\)
\(\Leftrightarrow\)\(x\left(x-2\right)\left(x^2+10\right)=0\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
Vậy...