c=\(\frac{2x+3y+4z}{3x+4y+5z}\)
cho các số dương x,y,z tỉ lệ với 3,4,5. Tính giá trị của biểu thức
\(P=\frac{x+2y+3x}{2x+3y+4z}+\frac{2x+3y+4z}{3x+4y+5z}+\frac{3x+4y+5z}{4x+5y+6z}\)
Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)
Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:
\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)
\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)
cho 4x=3y; 6y=5z. Tính \(M=\frac{2x+3y-4z}{3x+4y-5z}\)
Tìm x,y,z biết:
a, 3x = 4y;2y = 5z và 2x + 3y- 5z =55
b, 2x = 3y = -2z và 2x - 3y + 4z = 48
\(3x=4y;2y=5z\)
\(\Rightarrow\dfrac{x}{4}=\dfrac{y}{3};\dfrac{y}{5}=\dfrac{z}{2}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15};\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{x}{20}=\dfrac{y}{15}=\dfrac{z}{6}\)
\(\Rightarrow\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{40}=\dfrac{3y}{45}=\dfrac{5z}{30}\)
\(=\dfrac{2x+3y-5z}{40+45-30}=\dfrac{55}{55}=1\)
\(\Rightarrow\left\{{}\begin{matrix}x=1.20=20\\y=1.15=15\\z=1.6=6\end{matrix}\right.\)
Tương tự
Ta có :
\(2x+3y-5z=55\)
\(3x=4y;2y=5z\)
\(\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4};\dfrac{y}{2}=\dfrac{z}{5}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12};\dfrac{y}{12}=\dfrac{z}{16}\)
\(\Leftrightarrow\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{9}=\dfrac{y}{12}=\dfrac{z}{16}=\dfrac{2x+3y-5z}{2.19+3.12-2.16}=\dfrac{55}{22}=\dfrac{5}{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{9}=\dfrac{5}{2}\Leftrightarrow x=\dfrac{45}{2}\\\dfrac{y}{12}=\dfrac{5}{2}\Leftrightarrow x=30\\\dfrac{z}{16}=\dfrac{5}{2}\Leftrightarrow z=40\end{matrix}\right.\)
Vậy ..............
Tìm x, y, z, biết:
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) và 3x - 4y + 5z = 65
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) hay \(\frac{x}{18}=\frac{y}{16}=\frac{z}{15}\) => \(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}\)
Áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{3x}{54}=\frac{4y}{64}=\frac{5z}{75}=\frac{3x-4y+5z}{54-64+75}=\frac{65}{65}=1\)
suy ra: \(\frac{3x}{54}=1\) => \(x=18\)
\(\frac{4y}{64}=1\) => \(y=16\)
\(\frac{5z}{75}=1\) => \(z=15\)
\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Leftrightarrow\frac{x}{\frac{2}{3}}=\frac{y}{\frac{3}{4}}=\frac{z}{\frac{4}{5}}\Rightarrow\frac{3x}{\frac{2}{3}.3}=\frac{4y}{\frac{3}{4}.4}=\frac{5z}{\frac{4}{5}.5}\)
\(\Leftrightarrow\frac{3x}{2}=\frac{4y}{3}=\frac{5z}{4}\)
ÁP DỤNG TÍNH CHẤT DÃY TỈ SỐ BẰNG NHAU:
\(\Leftrightarrow\frac{3x}{2}-\frac{4y}{3}+\frac{5z}{5}\Rightarrow\frac{3x-4y+5z}{2-3+5}=\frac{65}{4}\)
\(\Rightarrow\frac{3x}{2}=\frac{65}{4}\Rightarrow3x=\frac{65}{4}.2\Rightarrow3x=\frac{65}{2}\Rightarrow x=\frac{65}{6}\)
\(\Rightarrow\frac{4y}{3}=\frac{65}{4}\Rightarrow4y=\frac{65}{4}.3\Rightarrow4y=\frac{195}{4}\Rightarrow y=\frac{195}{16}\)
\(\Rightarrow\frac{5z}{5}=\frac{65}{4}\Rightarrow5z=\frac{65}{4}.5\Rightarrow5z=\frac{325}{4}\Rightarrow z=\frac{65}{4}\)
# chúc bạn học tốt #
Ta có:\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\Rightarrow\frac{3x}{\frac{9}{2}}=\frac{4y}{\frac{16}{3}}=\frac{5z}{\frac{25}{4}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau:
\(\frac{3x}{\frac{9}{2}}=\frac{4y}{\frac{16}{3}}=\frac{5z}{\frac{25}{4}}=\frac{3x-4y+5z}{\frac{9}{2}-\frac{16}{3}+\frac{25}{4}}=\frac{65}{\frac{65}{12}}=65.\frac{12}{65}=12\)
\(\frac{x}{\frac{3}{2}}=12\Rightarrow x=12.\frac{3}{2}=18\)
\(\frac{y}{\frac{4}{3}}=12\Rightarrow y=12.\frac{4}{3}=16\)
\(\frac{z}{\frac{5}{4}}=12\Rightarrow z=12.\frac{5}{4}=15\)
Vậy \(x=18,y=16,z=15\)
Cho\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{6}\).Tính \(M=\frac{2x+3y+4z}{3x+4y+5z}\)
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\left(1\right)\)
\(\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\left(2\right)\)
từ (1) và (2) => \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)
đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{24}=k\Rightarrow x=15k,y=20k,z=24k\)
thay x=15k, y=20k, z=24k vào M ta có:
\(M=\frac{2.15k+3.20k+4.24k}{3.15k+4.20k+5.24k}=\frac{30k+60k+96k}{45k+80k+120k}=\frac{186k}{245k}=\frac{186}{245}\)
vậy M=\(\frac{186}{245}\)
a,3x=4y-3y=7z-4y và x+y-2z=10
b,2x=3y-2x=5z-3y và x+y+z=53
c,5x-3y=4y=3z+10x và x+y+z=28
d,4x-3z=6y-x=z và 2x+3y+4z=19
Tìm x , y , z :
a) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) và 2x + 3y - z = 50
b) \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{x-5}{6}\)và 5x - 3y - 4z = 46
c) \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
d) \(\frac{5z-6y}{4}=\frac{6x-4z}{5}=\frac{4y-5z}{6}\)và 3x - 2y + 5z = 96
a
Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)
\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)
Thay vào,ta được:
\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)
\(\Leftrightarrow4k+2+9k+6-4k-3=50\)
\(\Leftrightarrow9k+5=50\)
\(\Leftrightarrow9k=45\)
\(\Leftrightarrow k=5\)
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)
\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)
\(\Rightarrow x=2\cdot2+1=5\)
\(y=4\cdot2-3=5\)
\(z=2\cdot6+5=17\)
Câu c tương tự như câu 1
\(c,\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\)và x + y + z = 107
Ta có : \(\frac{2x}{5}=\frac{3y}{10}=\frac{z}{12}\Leftrightarrow\frac{x}{\frac{5}{2}}=\frac{y}{\frac{10}{3}}=\frac{z}{12}=\frac{x+y+z}{\frac{5}{2}+\frac{10}{3}+12}=\frac{107}{\frac{107}{6}}=107\cdot\frac{6}{107}=6\)
Vậy : \(\hept{\begin{cases}\frac{2x}{5}=6\\\frac{3y}{10}=6\\\frac{z}{12}=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=15\\x=20\\z=72\end{cases}}\)
Cho \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{6}\)Tinh M= \(\frac{2x+3y+4z}{3x+4y+5z}\)
Ta có:\(\hept{\begin{cases}\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\\\frac{y}{5}=\frac{z}{6}\Rightarrow\frac{y}{20}=\frac{z}{24}\end{cases}}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{24}\)\(\Leftrightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{4z}{96}=\frac{2x+3y+4z}{30+60+96}=\frac{2x+3y+4z}{186}\)(theo tính chất dãy tỉ số bằng nhau).(1)
= \(\frac{3x}{45}=\frac{4y}{80}=\frac{5z}{120}=\frac{3x+4y+5z}{45+80+120}=\frac{3x+4y+5z}{245}\)(theo tính chất dãy tỉ số bằng nhau). (2)
Từ (1) và (2) \(\Rightarrow\frac{2x+3y+4z}{186}=\frac{3x+4y+5z}{245}\Rightarrow\frac{2x+3y+4z}{3x+4y+5z}=\frac{186}{245}\)
Cho \(\frac{x}{3}=\frac{y}{4}vs\frac{y}{5}=\frac{6}{6}\) .Tính M=\(\frac{2x+3y+4z}{3x+4y+5z}\)