Thực hiện phép tính :
a) (x - 5)(4x - y) b) (2x + 3y)^2
Bài 3:
3: \(6x\left(x-y\right)-9y^2+9xy\)
\(=6x\left(x-y\right)+9xy-9y^2\)
\(=6x\left(x-y\right)+9y\left(x-y\right)\)
\(=\left(x-y\right)\left(6x+9y\right)\)
\(=3\left(2x+3y\right)\left(x-y\right)\)
Bài 4:
thực hiện các phép tính sau:
a,3x^2.(2x^3-x+5)=6x^5-3x^3+15x^2
b,(4xy+3y-5x)x^2y=4x^3y^2+3x^2y^2-5x^3y
Answer:
\(3x^2.\left(2x^3-x+5\right)\)
\(=3x^2.2x^3+3x^2.(-x)+3x^2.5\)
\(=6x^5-3x^3+15x^2\)
\((4xy+3y-5x).x^2y\)
\(=4xy.x^2y+3y.x^2y-5x.x^2y\)
\(=4x^3+3x^2y^2-5x^3y\)
bài 1 : thực hiện phép tính
a) (4x - 1)(2 - x)-(2x-1)^2
b) (15x^4y^5-30x^3y^4+35x^3y^4): (5x^3y^3)
a) (4x-1)(2-x)-(2x-1)2
= 8x-4x2-2+x-(4x2-4x+1) = -8x2+13x-3
b) (15x4y5-30x3y4+35x3y4):(5x3y3)
= 3xy2-6y+7y = 3xy2+y
a: \(=8x-4x^2-2+2x-4x^2+4x-1\)
\(=-8x^2+14x-3\)
Bài 1: Thực hiện phép tính
a) (x-4) (x+4) - (5-x) (x+1)
b) (3x^2 - 2xy + 4) + ( 5xy - 6x^2 - 7)
Bài 2: Rút gọn biểu thức
a) 3x^2 (2x + y) - 2y(4x^2 - y)
b) (x+3y) (x-2y) - (x^4 - 6x^2y^3): x^2y
Bài 1:
a, (\(x\) - 4).(\(x\) + 4) - (5 - \(x\)).(\(x\) + 1)
= \(x^2\) - 16 - 5\(x\) - 5 + \(x^2\) + \(x\)
= (\(x^2\) + \(x^2\)) - (5\(x\) - \(x\)) - (16 + 5)
= 2\(x^2\) - 4\(x\) - 21
b, (3\(x^2\) - 2\(xy\) + 4) + (5\(xy\) - 6\(x^2\) - 7)
= 3\(x^2\) - 2\(xy\) + 4 + 5\(xy\) - 6\(x^2\) - 7
= (3\(x^2\) - 6\(x^2\)) + (5\(xy\) - 2\(xy\)) - (7 - 4)
= - 3\(x^2\) + 3\(xy\) - 3
Bài 2:
a, 3\(x^2\).(2\(x\) + y) - 2y(4\(x^2\) - y)
= 6\(x^3\) + 3\(x^2\).y - 8y\(x^2\) + 2y2
= 6\(x^3\) - (8\(x^2\)y - 3\(x^2\)y) + 2y2
= 6\(x^3\) - 5\(x^2\)y + 2y2
Thực hiện các phép tính sau a) 3y/28^2 . 2x/7y^4.49x^4y^3 b) (-20x/3y^2) : (-4x^3/5y) c) 4x+12/(x+4)^2 : 3(x+3)/x+4
thực hiện phép tính
(x^2-y^2).\(\dfrac{x^2+y^2}{y^4-x^2y^2}\)
\(\dfrac{4x^2-9y^2}{xy}\):(2x-3y)
Ta có:(x2-y2)\(.\dfrac{x^2+y^2}{y^4-x^2y^2}\)\(=\left(x^2-y^2\right).\dfrac{x^2+y^2}{y^2\left(y^2-x^2\right)}=-\dfrac{x^2+y^2}{y^2}\)
Ta có:\(\dfrac{4x^2-9y^2}{xy}:\left(2x-3y\right)=\dfrac{\left(2x-3y\right)\left(2x+3y\right)}{xy}.\dfrac{1}{\left(2x-3y\right)}=\dfrac{2x+3y}{xy}\)
Thực hiện phép tính:
(2x + 3) (x - 5) + 2x(3 - x) + x - 10
(6x^3y^2 - 8x^2y^3 + 4x^3y^3) : 2x^2y^2
\(\left(2x+3\right)\left(x-5\right)+2x\left(3-x\right)+x-10\)
\(=\left(2x^2+3x-10x-15\right)+\left(6x-2x^2\right)+x-10\)
\(=-25\)
Thực hiện phép tính :
Thực hiện phép tính :
5.x^2(x-y+1)+(x^2-1)(x+y)
Bài 2:
1: \(A=\left(x+2\right)\left(x^2-2x+4\right)+2\left(x+1\right)\left(1-x\right)\)
\(=\left(x+2\right)\left(x^2-x\cdot2+2^2\right)-2\left(x+1\right)\left(x-1\right)\)
\(=x^3+2^3-2\left(x^2-1\right)\)
\(=x^3+8-2x^2+2=x^3-2x^2+10\)
\(B=\left(2x-y\right)^2-2\left(4x^2-y^2\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y\right)^2-2\cdot\left(2x-y\right)\left(2x+y\right)+\left(2x+y\right)^2+4\left(y+2\right)\)
\(=\left(2x-y-2x-y\right)^2+4\left(y+2\right)\)
\(=\left(-2y\right)^2+4\left(y+2\right)\)
\(=4y^2+4y+8\)
2: Khi x=2 thì \(A=2^3-2\cdot2^2+10=8-8+10=10\)
3: \(B=4y^2+4y+8\)
\(=4y^2+4y+1+7\)
\(=\left(2y+1\right)^2+7>=7>0\forall y\)
=>B luôn dương với mọi y
Bài 1:
5: \(x^2\left(x-y+1\right)+\left(x^2-1\right)\left(x+y\right)\)
\(=x^3-x^2y+x^2+x^3+x^2y-x-y\)
\(=2x^3-x+x^2-y\)
6: \(\left(3x-5\right)\left(2x+11\right)-6\left(x+7\right)^2\)
\(=6x^2+33x-10x-55-6\left(x^2+14x+49\right)\)
\(=6x^2+23x-55-6x^2-84x-294\)
=-61x-349
thực hiện phép tính \(\left(4x^5+3xy^4-y^5+2x^4y-6x^3y^2\right)\div\left(2x^3+y^3-2xy^2\right)\)