Cho n là snt lớn hon 3 . Hoi n2 +2017 là snt hay hợp số
cho n là snt lớn hơn 3 . n ^ 2 + 2006 là snt hay hợp số
Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1; 2006 chia 3 dư 2
=> n2 + 2006 chia hết cho 3
Mà 1 < 3 < n2 + 2006
=> n2 + 2006 là hợp số
n là SNT lớn hơn 3
=> n ko chia hết cho 3
=>n2 chia 3 dư 1
=>n2=3k+1
=>n2+2006=3k+1+2006=3k+2007 chia hết cho 3 (vì 3k và 2007đeều chia hết cho 3)
=>n2+2006 là hợp số
Do n nghuyên tố > 3 => n không chia hết cho 3 => n2 không chia hết cho 3
=> n2 chia 3 dư 1; 2006 chia 3 dư 2
=> n2 + 2006 chia hết cho 3
Mà 1 < 3 < n2 + 2006
=> n2 + 2006 là hợp số
Cho p là SNT lớn hơn 3,p+8 cũng là SNT. Hỏi p+2021 là SNT hay hợp số
Vì p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ
=> Tổng p+2021 là số chẵn
Mà p+2021>2 nên p+2021 là hợp số
Vậy p+2021 là họp số.
cho p,q,r là snt lớn hơn 3 hỏi p^2+13q^2+7r^2 là snt hay hợp số
Giúp mk với : Cho n là SNT lớn hơn 3. Hỏi n2 +2006 là SNT hay hợp số?
Cố gắng giúp mình nhé ! Lựa chọn Đ , S cho ai của mình chỉ có 1.Mình sẽ tick cho người đầu tiên giúp mk
Ta có : n là số nguyên tố lớn hơn 3
=> n có dạng 3k+1 hoặc 3k+2 (với k thuộc N*)
+ Với n = 3k+1
=> (3k+1)2+2006 = 9k2+6k+1+2006
= 9k2+6k+2007 chia hết cho 3
=> n2+2006 là hợp số
+ Với n = 3k+2
=> (3k+2)2+2006 = 9k2+12k+4+2006
= 9k2+12k+2010 chia hết cho 3
=> n2+2006 là hợp số
Vậy n2+2006 là hợp số
a) Nếu p là SNT lớn hơn 3 và 2p + 1 cũng là SNT thì 4p + 1 là SNT hay hợp số?
b) Tìm ƯC của hai số 2n + 1 và 3n + 1 ( n \(\in\) N )
c) Tìm tất cả các ước chung của 5n + 6 và 8n + 7
b: Gọi d=UCLN(2n+1;3n+1)
\(\Leftrightarrow3\left(2n+1\right)-2\left(3n+1\right)⋮d\)
\(\Leftrightarrow1⋮d\)
=>d=1
=>UC(2n+1;3n+1)={1;-1}
c: Gọi d=UCLN(75n+6;8n+7)
\(\Leftrightarrow8\left(5n+6\right)-5\left(8n+7\right)⋮d\)
\(\Leftrightarrow d=13\)
=>UC(5n+6;8n+7)={1;-1;13;-13}
Cho p la snt lon hon 3. Biet 8p + 1 cung la snt . Hoi 4p + 1 la so nguyen to hay hop so.
Ta thấy : 8p ; 8p + 1 ; 8p + 2 là 3 số tự nhiên liên tiếp
=> Tích của chúng chia hết cho 3
Mà p là số nguyên tố và 8 không chia hết cho 3
=> 8p không chia hết cho 3 (1)
Ta có:8p + 1 là số nguyên tố
=> 8p + 1 không chia hết cho 3 (2)
Từ (1) và (2) => 8p + 2 chia hết cho 3
Ta có: 8p + 2 = 2 ( 4p + 1 )
=> 4p + 1 chia hết cho 3 (vì 2 không chia hết cho 3)
Hay 4p + 1 là hợp số.
Chúc bạn học tốt!
Cho p la snt lon hon 3. Biet 8p + 1 cung la snt . Hoi 4p + 1 la so nguyen to hay hop so.
1a) tìm n2 + 2006 là 1 số chính phương
b) Cho n là snt lớn hơn 3. Hỏi n2 + 2006 là snt hay hợp số
2 tìm tất cả các số tự nhiên có 3 chữ số abc sao cho abc = n2-1 và abc =(n-2)2
1, Số 11...1211...1 là SNT hay HS (n thuộc N*)
các pn nhớ mỗi vế đều có n chư số 1
2, Cho n là số k chia hết cho 3.CMR n^2 chia 3 dư 1
3, Cho p là số NT>3.Hỏi p^2+2003 là SNT hay HS
Bài 1:Tìm SNT P sao cho
a,P^2+44 là SNT
b,P+10,-+14 là SNT
Bài 2,CMR:n^2-1 và n^2+1 không thể đồng thời là SNT
(n>2,n không chia hết cho 3)
Bài 3: Cho P là SNT>5 và 2P+1 cũng là SNT
CTR:P(P+5)+31 là Hợp Số
Bài 4: CMR:Nếu P là SNT>3 thì (P-1)(P+1) chia hết cho 24
Bài 4:
Vì P là số nguyên tố lớn hơn 3 nên P là số lẻ
hay P-1 và P+1 là các số chẵn
\(\Leftrightarrow\left(P-1\right)\left(P+1\right)⋮8\)
Vì P là số nguyên tố lớn hơn 3 nên P=3k+1(k∈N) hoặc P=3k+2(k∈N)
Thay P=3k+1 vào (P-1)(P+1), ta được:
\(\left(3k-1+1\right)\left(3k+1+1\right)=3k\cdot\left(3k+2\right)⋮3\)(1)
Thay P=3k+2 vào (P-1)(P+1), ta được:
\(\left(3k+2-1\right)\left(3k+2+1\right)=\left(3k+1\right)\left(3k+3\right)⋮3\)(2)
Từ (1) và (2) suy ra \(\left(P-1\right)\left(P+1\right)⋮3\)
mà \(\left(P-1\right)\left(P+1\right)⋮8\)
và (3;8)=1
nên \(\left(P-1\right)\left(P+1\right)⋮24\)(đpcm)