Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Y
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 4 2019 lúc 16:16

1.

\(P=\frac{a^4}{abc}+\frac{b^4}{abc}+\frac{c^4}{abc}\ge\frac{\left(a^2+b^2+c^2\right)^2}{3abc}=\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)\left(a+b+c\right)}{3abc\left(a+b+c\right)}\)

\(P\ge\frac{\left(a^2+b^2+c^2\right).3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}}{3abc\left(a+b+c\right)}=\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)

Dấu "=" khi \(a=b=c\)

2.

\(P=\sum\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{\left(a+b+c+d\right)^2}{4.\frac{3}{8}\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" khi \(a=b=c=d\)

Y
27 tháng 4 2019 lúc 14:57

Thục Trinh, tran nguyen bao quan, Phùng Tuệ Minh, Ribi Nkok Ngok, Lê Nguyễn Ngọc Nhi, Tạ Thị Diễm Quỳnh,

Nguyễn Huy Thắng, ?Amanda?, saint suppapong udomkaewkanjana

Help me!

pro
14 tháng 5 2021 lúc 19:47

Bài thứ hai đó áp dụng bđt cauchy showas là ra rồi sử dụng tch bắc cầu tệ.

tram pham
Xem chi tiết
vũ thành trung
10 tháng 8 2016 lúc 16:50

đăng lại làm gì

Lê Đức Anh
Xem chi tiết
Fire Sky
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 4 2020 lúc 10:48

Bạn tham khảo (hoàn toàn dùng Cô-si):

Câu hỏi của Trần Anh Thơ - Toán lớp 8 | Học trực tuyến

marivan2016
Xem chi tiết
tran thi minh vuong
21 tháng 9 2016 lúc 21:05

25361

muon tim hieu
Xem chi tiết
Lightning Farron
12 tháng 12 2016 lúc 12:15

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}\). Mà theo BĐT AM-GM ta có:

\(\frac{\left(a+b+c+d\right)^2}{4\left(ab+ac+ad+bc+bd+cd\right)}=\frac{\left(a+b+c+d\right)^2}{2\left[\left(a+b\right)\left(c+d\right)+\left(a+c\right)\left(b+d\right)+\left(a+d\right)\left(b+c\right)\right]}\ge\frac{2}{3}\)

Đẳng thức xảy ra khi a=b=c=d

 

muon tim hieu
5 tháng 8 2016 lúc 14:57

là \(\frac{2}{3}\) nha

Tien Tran
Xem chi tiết
Nguyen Viet Bac
12 tháng 7 2017 lúc 12:54

Đặt 

\(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)

a)

Sửa đề nhá : 

\(\frac{3a+2c}{3b+2d}=\frac{3bk+2dk}{3b+2d}=\frac{k\left(3b+2d\right)}{\left(3b+2d\right)}=k\)(1)

\(\frac{2a+5c}{2b+5d}=\frac{2bk+5dk}{2b+5d}=\frac{k\left(2b+5d\right)}{2b+5d}=k\)(2)

Từ (1) và (2) 

=> \(\frac{3a+2c}{3b+2d}=\frac{2a+5c}{2b+5d}\)

b)

\(\frac{a^3}{b^3}=\frac{b^3k^3}{b^3}=k^3\)(3)

\(\frac{\left(a+c\right)^3}{\left(b+d\right)^3}=\frac{\left(bk+dk\right)^3}{\left(b+d\right)^3}=\frac{k^3\left(b+d\right)^3}{\left(b+d\right)^3}=k^3\)(4)

Từ (3) và (4) 

=> \(\frac{a^3}{b^3}=\frac{\left(a+c\right)^3}{\left(b+d\right)^3}\)

Trí Tiên亗
Xem chi tiết
HD Film
25 tháng 7 2020 lúc 20:35

\(\text{Σ}\frac{a}{b+2c+3d}=\text{Σ}\frac{a^2}{ab+2ac+3ad}\ge\frac{\left(a+b+c+d\right)^2}{6\left(ab+bc+cd+ad\right)}\)

\(=\frac{\left(a+b\right)^2+\left(c+d\right)^2+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}=\frac{a^2+c^2+b^2+d^2+2ab+2cd+2\left(a+b\right)\left(c+d\right)}{6\left(ab+bc+cd+ad\right)}\)

\(\ge\frac{4\left(ab+bc+cd+ad\right)}{6\left(ab+bc+cd+ad\right)}=\frac{2}{3}\)

Dấu = xảy ra khi a=b=c=d

Khách vãng lai đã xóa
Kiyotaka Ayanokoji
25 tháng 7 2020 lúc 20:40

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\)

\(=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

\(\ge\frac{\left(a+b+c+d\right)^2}{4.\left(ab+ad+bc+bd+ca+cd\right)}\)\(\ge\frac{\left(a+b+c+d\right)^2}{\frac{3}{2}.\left(a+b+c+d\right)^2}=\frac{2}{3}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=d\)

Khách vãng lai đã xóa
☆MĭηɦღAηɦ❄
25 tháng 7 2020 lúc 20:41

\(VT=\frac{a^2}{ab+2ac+3ad}+\frac{b^2}{bc+2bd+3ab}+\frac{c^2}{cd+2ac+3bc}+\frac{d^2}{ad+2bd+3cd}\)

Áp dụng BĐT Svac-xơ cho 3 số dương ta được :

\(VT\ge\frac{\left(a+b+c+d\right)^2}{4ab+4ac+4ad+4bc+4bd+4cd}\)

Áp dụng BĐT phụ \(x^2+y^2\ge2xy\) ta được :

\(a^2+b^2\ge2ab;a^2+c^2\ge2ac;a^2+d^2\ge2ad\)

\(b^2+c^2\ge2bc;b^2+d^2\ge2bd;c^2+d^2\ge2cd\)

\(\Rightarrow3\left(a^2+b^2+c^2+d^2\right)\ge2\left(ab+ac+ad+bc+bd+cd\right)\)

Ta lại có : \(\left(a+b+c+d\right)^4=a^2+b^2+c^2+d^2+2ab+2ac+2ad+2bc+2bd+2cd\)

\(\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{3}\)

\(\Rightarrow VT\ge\frac{\left(a+b+c+d\right)^4}{4\left(ab+ac+ad+bc+bd+cd\right)}\ge\frac{8\left(ab+ac+ad+bc+bd+cd\right)}{12\left(ab+ac+ad+bc+bd+cd\right)}=\frac{2}{3}\)

Dấu "=" xảy ra khi \(a=b=c=d\)

Khách vãng lai đã xóa