Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Trần Phát
Xem chi tiết
Phan Quỳnh
Xem chi tiết
Nguyễn Quốc Phương
2 tháng 12 2016 lúc 21:33

giải xog thì chớt

Ánh Dương
Xem chi tiết
Hồng Phúc
11 tháng 12 2020 lúc 22:36

Đề đúng chưa v

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Ending of Story
Xem chi tiết
Lê Tài Bảo Châu
29 tháng 7 2021 lúc 0:08

1. \(\sqrt{x^2-4}-x^2+4=0\)( ĐK: \(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\))

\(\Leftrightarrow\sqrt{x^2-4}=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2=x^2-4\)

\(\Leftrightarrow\left(x^2-4\right)^2-\left(x^2-4\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-4-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=4\\x^2=5\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm2\left(tm\right)\\x=\pm\sqrt{5}\left(tm\right)\end{cases}}\)

Vậy pt có tập no \(S=\left\{2;-2;\sqrt{5};-\sqrt{5}\right\}\)

2. \(\sqrt{x^2-4x+5}+\sqrt{x^2-4x+8}+\sqrt{x^2-4x+9}=3+\sqrt{5}\)ĐK: \(\hept{\begin{cases}x^2-4x+5\ge0\\x^2-4x+8\ge0\\x^2-4x+9\ge0\end{cases}}\)

\(\Leftrightarrow\sqrt{x^2-4x+5}-1+\sqrt{x^2-4x+8}-2+\sqrt{x^2-4x+9}-\sqrt{5}=0\)

\(\Leftrightarrow\frac{x^2-4x+4}{\sqrt{x^2-4x+5}+1}+\frac{x^2-4x+4}{\sqrt{x^2-4x+8}+2}+\frac{x^2-4x+4}{\sqrt{x^2-4x+9}+\sqrt{5}}=0\)

\(\Leftrightarrow\left(x-2\right)^2\left(\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}\right)=0\)

Từ Đk đề bài \(\Rightarrow\frac{1}{\sqrt{x^2-4x+5}+1}+\frac{1}{\sqrt{x^2-4x+8}+2}+\frac{1}{\sqrt{x^2}-4x+9+\sqrt{5}}>0\)

\(\Rightarrow\left(x-2\right)^2=0\)

\(\Leftrightarrow x=2\left(tm\right)\)

Vậy pt có no x=2

Khách vãng lai đã xóa
Oriana.su
Xem chi tiết
Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 7:44

\(a,\) Sửa đề: \(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}=5\)

Ta thấy \(3x^2-12x+16=3\left(x-2\right)^2+4\ge4\Leftrightarrow\sqrt{3x^2-12x+16}\ge\sqrt{4}=2\)

\(y^2-4y+13=\left(y-2\right)^2+9\ge9\Leftrightarrow\sqrt{y^2-4y+13}\ge\sqrt{9}=3\)

Cộng vế theo vế 2 BĐT trên:

\(\sqrt{3x^2-12x+16}+\sqrt{y^2-4y+13}\ge2+3=5\)

Dấu \("="\Leftrightarrow x=y=2\)

Vậy pt có nghiệm \(\left(x;y\right)=\left(2;2\right)\)

 

Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 7:48

\(b,x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ \Leftrightarrow x+y+z+4-2\sqrt{x-2}-4\sqrt{y-3}-6\sqrt{z-5}=0\\ \Leftrightarrow\left(x-2-2\sqrt{x-2}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-5+6\sqrt{z-5}+9\right)=0\\ \Leftrightarrow\left(\sqrt{x-2}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-5}-3\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}\sqrt{x-2}-1=0\\\sqrt{y-3}-2=0\\\sqrt{z-5}-3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-2=1\\y-3=4\\z-5=9\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=7\\z=14\end{matrix}\right.\)

Khánh An Ngô
Xem chi tiết
HT.Phong (9A5)
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Nguyễn Nguyên
Xem chi tiết
Trần Minh Hoàng
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Trần Minh Hoàng
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Tuhuyenn
Xem chi tiết
Trúc Giang
16 tháng 9 2021 lúc 9:01

a) \(3x-2\sqrt{x-1}=4\) (ĐK: x ≥ 1)

\(\Rightarrow3x-2\sqrt{x-1}-4=0\)

\(\Rightarrow3x-6-2\sqrt{x-1}+2=0\)

\(\Rightarrow3\left(x-2\right)-2\left(\sqrt{x-1}-1\right)=0\)

\(\Rightarrow3\left(x-2\right)-2.\dfrac{x-2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow\left(x-2\right)\left[3-\dfrac{2}{\sqrt{x-1}+1}\right]=0\)

*TH1: x = 2 (t/m)

*TH2: \(3-\dfrac{2}{\sqrt{x-1}+1}=0\)

\(\Rightarrow3=\dfrac{2}{\sqrt{x-1}+1}\)

\(\Rightarrow3\sqrt{x-1}+3=2\)

\(\Rightarrow3\sqrt{x-1}=-1\) (vô lí)

Vậy S = {2}

b) \(\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\) (ĐK: \(-\dfrac{1}{4}\le x\le3\) )

\(\Rightarrow\sqrt{4x+1}-3-\sqrt{x+2}+2-\sqrt{3-x}+1=0\)

\(\Rightarrow\dfrac{4x-8}{\sqrt{4x+1}+3}-\dfrac{x-2}{\sqrt{x+2}+2}+\dfrac{x-2}{\sqrt{3-x}+1}=0\)

\(\Rightarrow\left(x-2\right)\left(\dfrac{4}{\sqrt{4x+1}+3}-\dfrac{1}{\sqrt{x+2}+2}+\dfrac{1}{\sqrt{3-x}+1}\right)=0\)

=> x = 2

 

 

 

Nguyễn Hoàng Minh
16 tháng 9 2021 lúc 9:03

\(a,3x-2\sqrt{x-1}=4\left(x\ge1\right)\\ \Leftrightarrow-2\sqrt{x-1}=4-3x\\ \Leftrightarrow4\left(x-1\right)=16-24x+9x^2\\ \Leftrightarrow9x^2-28x+20=0\\ \Leftrightarrow\left(x-2\right)\left(9x-10\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=\dfrac{10}{9}\left(tm\right)\end{matrix}\right.\)

\(b,\sqrt{4x+1}-\sqrt{x+2}=\sqrt{3-x}\left(-\dfrac{1}{4}\le x\le3\right)\\ \Leftrightarrow4x+1+x+2-2\sqrt{\left(4x+1\right)\left(x+2\right)}=3-x\\ \Leftrightarrow-2\sqrt{\left(4x+1\right)\left(x+2\right)}=2-6x\\ \Leftrightarrow\sqrt{4x^2+9x+2}=3x-1\\ \Leftrightarrow4x^2+9x+2=9x^2-6x+1\\ \Leftrightarrow5x^2-15x-1=0\\ \Leftrightarrow\Delta=225+20=245\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{15-\sqrt{245}}{10}=\dfrac{15-7\sqrt{5}}{10}\left(ktm\right)\\x=\dfrac{15+\sqrt{245}}{10}=\dfrac{15+7\sqrt{5}}{10}\left(tm\right)\end{matrix}\right.\Leftrightarrow x=\dfrac{15+7\sqrt{5}}{10}\)