Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trịnh Văn Đại
Xem chi tiết
Nguyễn Kim Huệ
27 tháng 4 2017 lúc 17:18

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

Đức Lộc
7 tháng 4 2019 lúc 15:46

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

Ngô Thanh Uyên
Xem chi tiết
Kirigaya Kazuto
Xem chi tiết
Isolde Moria
22 tháng 11 2016 lúc 18:38

Vì 2 n - 1 là số chính phương . Mà 2n - 1 lẻ

\(\Rightarrow2n+1=1\left(mod8\right)\)

=> n \(⋮\) 4

=> n chẵn

=> n+1 cũng là số lẻ

\(\Rightarrow n+1=1\left(mod8\right)\)

=> n \(⋮\) 8

Mặt khác :

\(3n+2=2\left(mod3\right)\)

\(\Rightarrow\left(n+1\right)+\left(2n+1\right)=2\left(mod3\right)\)

Mà n+1 và 2n+1 là các số chính phương lẻ

\(\Rightarrow n+1=2n+1=1\left(mod3\right)\)

=> n chia hết cho 3

Mà ( 3 ; 8 ) = 1

=> n chia hết cho 24

Dương
22 tháng 11 2016 lúc 19:13

Vì n + 1 và 2n + 1 đêu là phân số chính phương nên đặt n+1 = k\(^2\), 2n+1 = m\(^2\)( k, m \(\in\) N)

Ta có m là số lẻ => m = 2a+1 =>m\(^2\)= 4a(a+1)+1

=>n=\(\frac{m^2-1}{2}\)=\(\frac{4a\left(a+1\right)}{2}\)=2a(a+1)

=> n chẵn =>n+1 là số lẻ =>k lẻ =>Đặt k = 2b+1 (Với b \(\in\) N) =>k\(^2\)=4b(b+1)+1

=> n=4b(b+1) =>n \(⋮\)8 (1)

Ta có k\(^2\) + m\(^2\) =3n+2=2 ( mod3)

Mặt khác k\(^2\) chia 3 dư 0 hoặc 1 ,m\(^2\)chia 3 dư 0 hoặc 1

Nên để k\(^2\)+m\(^2\) =2 (mod3) thì k\(^2\) = 1(mod3)

m\(^2\) = 1 (mod3)

=>m\(^2\)-k\(^2\)\(⋮\)3 hay (2n+1)-(n+1) \(⋮\)3 =>n \(⋮\) 3

Mà (8;3)=1

Từ (1) ; (2) và (3) => n \(⋮\) 24

Nguyễn Thị Ngọc Hà
20 tháng 3 2017 lúc 15:06

mod3

Yukki Asuna
Xem chi tiết
Đen đủi mất cái nik
21 tháng 4 2017 lúc 13:01

Ai làm jup vs ạ

Nguyễn Kim Huệ
27 tháng 4 2017 lúc 17:23

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24

Le Trinh
17 tháng 12 2018 lúc 20:06

cuộc đời sao lắm dèm pha 

đi đâu cũng gặp lâu la thế này

Trần Tiến Đạt
Xem chi tiết
Ħäńᾑïě🧡♏
12 tháng 7 2021 lúc 20:38

Tham khảo:

,m. /kl;
14 tháng 12 2023 lúc 21:07

Nhận xét rằng một số nguyên dương không thể chia 33 dư 22 nên nếu nn không chia hết cho 33 thì một trong hai số n+1,2n+1n+1,2n+1 có một số chia 3 dư 2 nên vô lý. Vậy n⋮3n⋮3. (1)(1)

Có 2n+12n+1 là một chính phương lẻ nên 2n+12n+1 chia 88 dư 11 nên nn chẵn nên n+1n+1 cũng là số chính phương lẻ nên n+1n+1 chia 88 dư 11 nên nn chia hết cho 88. (2)(2)

Từ (1),(2)(1),(2) có n⋮24n⋮24.

truong nhat  linh
Xem chi tiết
Chu Thị Mai Hoa
Xem chi tiết
Lãnh Hạ Thiên Băng
9 tháng 1 2017 lúc 7:28

Vì 2n+1 là số chính phương lẻ nên 

2n+1≡1(mod8)⇒2n⋮8⇒n⋮42n+1≡1(mod8)⇒2n⋮8⇒n⋮4

Do đó n+1 cũng là số lẻ, suy ra

n+1≡1(mod8)⇒n⋮8n+1≡1(mod8)⇒n⋮8

Lại có

(n+1)+(2n+1)=3n+2(n+1)+(2n+1)=3n+2

Ta thấy

3n+2≡2(mod3)3n+2≡2(mod3)

Suy ra

(n+1)+(2n+1)≡2(mod3)(n+1)+(2n+1)≡2(mod3)

Mà n+1 và 2n+1 là các số chính phương lẻ nên

n+1≡2n+1≡1(mod3)n+1≡2n+1≡1(mod3)

Do đó

n⋮3n⋮3

Vậy ta có đpcm.

Chu Thị Mai Hoa
9 tháng 1 2017 lúc 21:06

cảm ơn bạn nhiều !!

Xích U Lan
Xem chi tiết
HT2k02
13 tháng 4 2021 lúc 23:02

Ta có: 2n+1 là số chính phương lẻ (do n tự nhiên)

nên 2n+1 chia 8 dư 1

=> 2n chia hết cho 8 => n chia hết cho 4

=> n+1 lẻ

Mà n+1 là số chính phương

=> n+1 chia 8 dư 1

=> n chia hết cho 8 (1)

 

Giả sử n không chia hết cho 3

Vì n+1 là số chính phương nên chia 3 dư 1 hoặc chia hết cho 3

=> n chia hết cho 3 hoặc chia 3 dư 2 

Mà n không chia hết cho 3

=> n chia 3 dư 2

=> 2n+1 chia 3 dư 2 (vô lý vì số chính phương chia 3 dư 0 hoặc 1)

=> giả sử sai

=> n chia hết cho 3 (2)

 

Mặt khác : BCNN (8,3)=24 (3)

Từ (1)(2)(3) => n chia hết cho 24

ntkhai0708
13 tháng 4 2021 lúc 23:17

$2n+1$ là số chính phương nên $2n+1 \equiv 0;1(mod3)$
Với $2n+1 \equiv 0 (mod 3)$ mà $n \equiv 0;2 (mod 3)$ do $n+1$ là scp nên ta loại
Với $2n+1 \equiv 1 (mod 3)$ hay $2n \equiv 0(mod3)$

Hay $n \equiv 3$

$2n+1 \equiv 1 (mod 8)$ nên $2n \equiv 0 (mod 8)$

suy ra $n \vdots 4$
$n+1 \equiv 1 (mod8)$

Nên $n \vdots 8$

$n \vdots 3$

$(8;3)=1$ nên $n \vdots 24$ hay $n$ là bội của 24

 

Nguyễn thị khánh hòa
Xem chi tiết
Đào Trọng Luân
7 tháng 6 2017 lúc 16:59

Giả sử: n+1=a2

2n+1=b2

Vì 2n+1 lẻ

=> b2:8 dư 1

=> 2n \(⋮\)8

=> n chẵn

=> a2:8 dư 1

=> n

Đào Trọng Luân
7 tháng 6 2017 lúc 17:05

GS: n+1= a2

2n+1=b2

=>2n chia hết cho 8

=> n chẵn

=> a2 chia 8 dư 1

=> n chia hết cho 8

a2+b2=3n+2

Vì số chính phương chia 3 dư 0 hoặc 1

Mà 3n+2 chia 3 dư 2

=> b2 và a2 chia 3 dư 1

=> n chia hết cho 3

Mà [3,8]=1=> n chia hết cho 24

damthivananh
17 tháng 1 2018 lúc 19:24

tui chưa học