Chứng minh rằng nếu n là số tự nhiên sao cho n + 1 và 2n + 1 đều là số chính phương thì n là bội của 24 .
CMR: nếu n+1 và 2n+1 đều là số chính phương thì n chia hết cho 24
CMR nếu 2n+1 và 3n+1 đều là số chính phương thì n chia hết cho 40.
Cho n là một số nguyên dương thỏa mãn n+1 và 2n+1 đồng thời là 2 số chính phương(số chính phương là bình phương của 1 số nguyên ) CMR: n chia hết 24
1) Tìm số có 2 chữ số ab sao cho số N=ab - ba là số chính phương
2) CMR 5X² + 10 và 4x² + 4x + 6 không phải là số chính phương
3) CMR (5k)² -1 và (7k)² -1 chia hết cho 24
4) CMR với mọi n thuộc số tự nhiên ta có (7.5^2n)+(12.6^n) chia hết cho 19
Chứng minh rằng: Nếu 2n + 1 và 3n + 1 (với n ∈N) đều là số chính phương thì n⋮40.
Cho n là số nguyên tố sao cho n + 1 và 2n + 1 là số chính phương, chứng minh n chia hết cho 24
Bài 3: Chứng minh rằng nếu n+1 và 2n+1 là các số chính phương thì n chia hết cho 24
cố giúp mik nhé, sáng mai đã phải nộp rồi
Câu 1: So sánh 2^3^2^3 với 3^2^3^2
Câu 2: cmr: vs mọi n là stn và n>1 thì 5^2^n + 2 có chữ số tận cùng là 7
Câu 3: tìm n là số nguyên sao cho n^2 + n - 17 là bội của bội của n+5
Câu 4: cmr: hiệu các bình phương của 2 số lẻ liên tiếp thì chia hết cho 8