chứng minh rằng 1+12^+12^+12^+....................+12^(^=1 đến 13) chia hết cho 13
bài 1/ cho M = 12+122+123+......+1229+1230
chứng minh M chia hết cho 13
bài 2/ cho (5a+17b) chia hết cho 21
chứng minh :(5b-a) chia hết cho 21
bài 3/ chứng tỏ rằng tổng của 3 số tự nhiên liên tiếp chia hết cho 3
Chứng minh rằng với mọi n nguyên dương thì \(^{13^n}\)-1 chia hết cho 12
Ta có:
`13^n-1(n in NN^**)`
`=(13-1)(13^{n-1}+........+1)`
`=12..... vdots 12`
Cho a/b = 1 + 1/2 + 1/3 + 1/4 + ... + 1/11 + 1/12 Chứng minh rằng : a chia hết cho 13
\(\frac{a}{b}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{11}+\frac{1}{12}\)
\(\frac{a}{b}=\left(1+\frac{1}{2}\right)+\left(\frac{1}{2}+\frac{1}{11}\right)+...+\left(\frac{1}{6}+\frac{1}{7}\right)\)
\(\frac{a}{b}=\frac{13}{1.2}+\frac{13}{2.11}+...+\frac{13}{6.7}\)
chọn mẫu chung
Thừa số phụ tương ứng k1,k2,k3,...,k6 ( 6 phân số )
\(\frac{a}{b}=\frac{13k_1}{1.2.3...12}+\frac{13k_2}{1.2.3...12}+...+\frac{13k_6}{1.2.3...12}\)
\(\frac{a}{b}=\frac{13.\left(k_1+k_2+k_3+...+k_6\right)}{1.2.3...12}\)
Vì tử số \(⋮\)13. Mẫu không chứa thừa số nguyên tố là 13
nên khi rút gọn phân số \(\frac{a}{b}\) và phân số tối giản thì a \(⋮\)13
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên ⋮2 ⇒n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
P/s đùng để ý đến câu trả lời của mình
Ai giải thích cho tui khúc thừa số phụ với, tui chẳng hiểu cái j._.
Chứng tỏ rằng:
1, 1210- 129- 128 chia hết cho 266
2, 1113- 1112- 11 chia hết cho 109
2) 1113 - 1112 - 1111
= 1111+2 - 1111+1 - 1111
= 1111.112 - 1111.11 - 1111
= 1111(112 - 11 - 1)
= 1111.109 \(⋮\) 109
vậy.........
mik ko biết nhưng hình như câu 1 sai đề bài hay sao ý
a) Chứng minh rằng : 13n+1-13n chia hết cho 12 với mọi số tự nhiên n
b) Chứng minh rằng n3-n chia hết cho 6 với mọi giá trị nguyên n
a)
Ta có: 13n+1 - 13n
= 13n . 13 - 13n
= 13n (13 - 1)
= 13n . 12 \(⋮\) 12
Vậy: 13n+1 - 13n \(⋮\) 12 vs mọi số tự nhiên n
b)
Ta có: n3 - n = n (n2 - 1)
= (n - 1).n.(n+1) \(⋮\) 6 (vì tích 3 số tự nhiên liên tiếp luôn chia hết cho 6)
Chứng tỏ rằng 81^7-9^13+12^35-12^34 chia hết cho 16
Chứng minh rằng:
\(81^7-9^{13}+12^{25}+27^9-12^{24}\)chia hết cho 16
ta có :
\(81^7-9^{13}+12^{25}+27^9-12^{24}=\left(3^4\right)^7-\left(3^2\right)^{13}+4^{25}.3^{25}+\left(3^3\right)^9-4^{24}.3^{24}\)
\(=3^{28}-3^{26}+3^{27}+4^{24}.3^{24}\left(4.3-1\right)=3^{26}\left(3^2-1+3\right)+4^{24}.3^{24}.11\)
\(=3^{26}.11+4^{24}.3^{24}.11\) mà \(\hept{\begin{cases}3^{26}.12̸\text{ không chia hết cho 16}\\4^{24}.3^{24}.11\text{ chia hết cho 16}\end{cases}}\)
Vậy biểu thức ban đầu không chia hết cho 16
a) cho a thuộc N; chứng minh rằng n(n+13)chia hết cho 12
b) (74n-1) chia hết cho 5
Giúp mk nha
Câu a. Đề là cm chia hết cho 2. Tin mình đi có thể sách bạn bị con muỗi đậu vào thêm số 1. Cm nếu n chẵn hiển nhiên. Nếu n lẻ thì (n+13) chẵn chia hét cho =đp cm
b)7^4=49^2 tận cùng là 1 =>7^4)^n tân cùng 1 =>7^(4n)-1 tân cùng là 0 vậy chia hết cho 5
Cho tổng:S=3^1+3^2+3^3+.....+ 3^20.Chứng minh rằng:
a)S chia hết cho 12
b)S chia hết cho 120
c)S không chia hết cho 13