Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Minh Hằng
Xem chi tiết
noob
Xem chi tiết
Tuyết Mai
Xem chi tiết
Phạm Việt Bách
Xem chi tiết
GV
23 tháng 5 2018 lúc 8:20

Bạn xem lời giải ở đường link phía dưới nhé

Câu hỏi của nguyen yen nhi - Toán lớp 5 - Học toán với OnlineMath

Cô Hoàng Huyền
Xem chi tiết
địt con mẹ mày
20 tháng 3 2021 lúc 10:20

anh đây đẹp troai, chim dài mét hai !

Khách vãng lai đã xóa
Phạm Đức Tấn Phát
27 tháng 9 2021 lúc 11:09

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right)

Khách vãng lai đã xóa
Nguyễn Anh Tú
27 tháng 9 2021 lúc 20:36

a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có: 
AH^2=BH.HC=4.9=36\Rightarrow AH=6\left(cm\right).
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
\widehat{ODM}=\widehat{OHM}=90^o
Suy ra \Delta DMO=\Delta HMO (ch - cgv).
Vì vậy DM=MH. (1) 
Từ đó suy ra tam giác MDH cân tại M hay \widehat{MDH}=\widehat{DHM}.
Có \widehat{BDM}+\widehat{MDH}=90^o,\widehat{DBH}+\widehat{DHB}=90^o.
Suy ra \widehat{MDB}=\widehat{DBM}. Vì vậy tam giác BDM cân tại M hay MB = MD.  (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
\dfrac{DE.\left(DM+EN\right)}{2}=\dfrac{6\left(2+4,5\right)}{2}=19,5\left(cm^2\right).

Khách vãng lai đã xóa
Mai phuong uyen
Xem chi tiết
GV
23 tháng 5 2018 lúc 8:13

Bạn xem lời giải ở đường link sau nhé:

Câu hỏi của nguyen yen nhi - Toán lớp 5 - Học toán với OnlineMath

Sách Giáo Khoa
Xem chi tiết
Trần Huỳnh Cẩm Hân
17 tháng 6 2017 lúc 10:14

search : https://hoc24.vn/hoi-dap/question/56467.html

Trần Hữu Phước
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
26 tháng 2 2017 lúc 15:52

a ,   Δ A B C ,   A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H ,   H ⏜ = 90 0   g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b ,   Δ A B C ,   A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2