Cho tam bgiacs ABC có ba góc nhọn , đường cao AH ( H nằm trên BC ) . Điểm I là trung điểm của AH . Biết 3 lần độ dài BH bằng 2 lần độ dài CH và diện tích tam giác ABC bằng 50cm2 . Diện tích tam giác AIH bằng ...... cm2
cho tam giác abc có 3 góc nhọn,đường cao ah(h nằm trên bc).điểm i là trung điểm của ah.biết 3 lần độ dài của bh=2 lần độ dài của CH và diện tích tam giác abc là 50cm2.diện tích tam giác iac là bao nhiêu cm2
chỉ cần ghi câu trả lời
Cho tam giác ABC vuông tại A( AB>AC), đường cao AH. Gọi M là trung điểm của AB,AD là phân giác của góc BAH (D thuộc BH),MD cắt AH tại E. 1)Chứng minh rằng: 2 2 AB AC BH CH = 2)Tính độ dài AH biết diện tích các tam giác AHC và ABH lần lượt là 8,64 cm2 và 15,36cm2 . 3) Chứng minh rằng: CE//AD
Cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn ; BH,CH có độ dài lần lượt là 4cm và 9cm . Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC .Tính a, DE
b, Cắt đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N . chứng minh M là trung điểm của BH, N là trung điểm của CH.
c, Tính diện tích tứ giác DEMN
Cho tam giác ABC có AC=6cm, trên BC lấy điểm E sao cho BE=EC, BH là chiều cao hạ từ đỉnh B của tam giác ABC và BH=3cm, Eh chia tam giác ABC thành 2 phần và diện tích hình ABEH gấp 2 lần diện tích hình ECH. Tính độ dài cạnh AH.
Bạn xem lời giải ở đường link phía dưới nhé
Câu hỏi của nguyen yen nhi - Toán lớp 5 - Học toán với OnlineMath
Cho tam giác $ABC$ vuông tại $A$, đường cao $AH$ chia cạnh huyền $BC$ thành hai đoạn $BH$, $CH$ có độ dài lần lượt là $4cm$, $9cm$. Gọi $D$ và $E$ lần lượt là hình chiếu của $H$ lên $AB$ và $AC$.
a) Tính độ dài $DE$.
b) Các đường vuông góc với $DE$ tại $D$ và tại $E$ lần lượt cắt $BC$ tại $M$ và $N$. Chứng minh rằng $M$ là trung điểm của $BH$ và $N$ là trung điểm của $CH$.
c) Tính diện tích tứ giác $DENM$.
anh đây đẹp troai, chim dài mét hai !
a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
.
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
Suy ra (ch - cgv).
Vì vậy . (1)
Từ đó suy ra tam giác MDH cân tại M hay .
Có .
Suy ra . Vì vậy tam giác BDM cân tại M hay MB = MD. (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
a) Tứ giác AEHD là hình chữ nhật (tứ giác có 3 góc vuông).
Vì vậy DE = AH.
Áp dụng hệ thức lượng trong tam giác vuông, ta có:
.
Vậy DE = AH = 6(cm).
b) Gọi O là giao điểm của AH và DE. Tứ giác ADHE là hình chữ nhật, suy ra OD = OH.
Xét tam giác DMO và tam giác HMO có:
MO chung
OD = OH
Suy ra (ch - cgv).
Vì vậy . (1)
Từ đó suy ra tam giác MDH cân tại M hay .
Có .
Suy ra . Vì vậy tam giác BDM cân tại M hay MB = MD. (2)
Từ (1) và (2) suy ra BM = MH hay M là trung điểm của BH.
Chứng minh tương tự ta có N là trung điểm của CH.
c) Tứ giác EDMN là hình thang với đường cao DE, các đáy DM và EN.
DM = BH : 2 = 2(cm), EN = AH : 2 = 4,5(cm).
Diện tích hình thang EDMN là:
.
Cho tam giác ABC có canh AC dài 6 cm , trên cạnh BC lấy điểm E sao cho EB = EC . BH là đường cao hạ từ đỉnh B của tam giác ABC và BH = 3cm . EH chia tam giác ABC thành 2 phần biết rằng diện tích tứ giác ABEH gấp đôi diện tích tam giác CEH .
a . Diện tích tam giác ABC và diện tích tam giác CHE
b. Tính độ dài đoạn AH
Bạn xem lời giải ở đường link sau nhé:
Câu hỏi của nguyen yen nhi - Toán lớp 5 - Học toán với OnlineMath
Cho tam giác ABC vuông tại A, đường cao AH chia cạnh huyền BC thành hai đoạn BH, CH có độ dài lần lượt là 4cm, 9cm. Gọi D và E lần lượt là hình chiếu của H trên AB và AC
a) Tính độ dài đoạn thẳng DE
b) Các đường thẳng vuông góc với DE tại D và tại E lần lượt cắt BC tại M và N. Chứng minh M là trung điểm của BH và N là trung điểm của CH
c) Tính diện tích tứ giác DENM
search : https://hoc24.vn/hoi-dap/question/56467.html
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH = 4cm, CH = 9cm
a) Tính độ dài đường cao AH và góc ABC của tam giác ABC
b) Vẽ đường trung tuyến AM, ( M thuộc BC ) của tam giác ABC. Tính AM và diện tích của tam giác AHM
Cho tam giác ABC vuông tại A, đường cao AH. Biết BH= 4cm, CH= 9cm.
a) Tính độ dài đường cao AH và A B C ⏜ của tam giác ABC.
b) Vẽ đường trung tuyến AM M ∈ B C của tam giác ABC, tính AM và diện tích tam giác AHM
a , Δ A B C , A ⏜ = 90 0 , A H ⊥ B C g t ⇒ A H = B H . C H = 4.9 = 6 c m Δ A B H , H ⏜ = 90 0 g t ⇒ tan B = A H B H = 6 4 ⇒ B ⏜ ≈ 56 , 3 0 b , Δ A B C , A ⏜ = 90 0 , M B = M C g t ⇒ A M = 1 2 B C = 1 2 .13 = 6 , 5 c m S Δ A H M = 1 2 M H . A H = 1 2 .2 , 5.6 = 7 , 5 c m 2