Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
cho tam giác ABC cuông tại A có đường cao AH .gọi AD là phân giác của góc BAH với D thuộc BH . gọi M là trung điểm của AB Gọi giao điểm của Ah và MD là E, chứng minh rằng CE song song với AB
Cho tam giác ABC vuông tại A (AB > AC), đường cao AH (H thuộc BC). Vẽ phân giác AD của góc BAH (D thuộc BH). Gọi M là trung điểm của BA
a) Cho AC = 3 cm; AB = 4 cm. Hãy giải tam giác ABC ? Làm tròn đến độ
b) Tính diện tích tam giác AHC
c) Chứng minh: \(\frac{DH}{DB}=\frac{HC}{AC}\)
d)Gọi E là giao điểm của DM và AH. Chứng minh: diện tích tam giác AEC bằng diện tích tam giác DEC
Cho tam giác ABC vuông tại A (AB>AC), kẻ đường cao AH. Vẽ tia phân giác của góc BAH (D thuộc BH). Gọi M là trung điểm AB, E là giao điểm của hai đường thẳng MD và AH.Chứng minh CE song song AD
Cho tam giác ABC vuông tại A (AB > AC), kẻ đường cao AH. a) Tính các cạnh và các góc của tam giác ABC biết BH = 9cm, CH = 4cm. b) Vẽ AD là tia phân giác của góc BAH, D thuộc BH. Chứng minh tam giác ACD cân. c) Chứng minh HD.BC = DB.AC. d) Gọi M là trung điểm của AB, E là giao điểm của hai đường thẳng MD và AH. Chứng minh CE // AD
Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.
a) Cho BH=4cm , CH=9cm. Tính AH,DE.
b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.
c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC
a, Chứng minh AD . AB = AE . AC
b, Gọi M , N lần lượt là trung điểm của BH và CH . Chứng minh DE là tiếp tuyến chung của 2 đường tròn ( M , MD ) và ( N , NE )
c,Gọi P là trung điểm MN , Q là giao điểm của DE và AH , giả sử AB=6cm , AC=8cm . Tính độ dài PQ
Cho tam giác ABC vuông ở A, đường cao AH chia cạnh huyền BC thành 2 đoạn ; BH,CH có độ dài lần lượt là 4cm và 9cm . Gọi D và E lần lượt là hình chiếu của điểm H trên AB và AC .Tính a, DE
b, Cắt đường thẳng vuông góc với DE tại D và E lần lượt cắt BC tại M và N . chứng minh M là trung điểm của BH, N là trung điểm của CH.
c, Tính diện tích tứ giác DEMN
Cho tam giác ABC vuông ở A, đường cao AH. Gọi D, E lần lượt là hình chiếu của AB, AC. Tính DE và các góc B, C. Biết BH = 4cm, HC = 9cm. Chứng minh: AD. AB = AE. AC. Gọi M, N lần lượt là trung điểm BH, CH. Chứng minh DMNE là hình thang vuông Chứngminh BD AB3 CE AC e) Chứng minh BC.BD.CE AH3.