Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quỳnh Chi Phạm

Cho tam giác ABC vuông tại A (AB<AC), đường cao AH. Gọi D và E lần lượt là chân các đường vuông góc kẻ từ H xuống AB,AC.

a) Cho BH=4cm , CH=9cm. Tính AH,DE.

b) Chứng minh bốn điểm A,D,H,E cùng nằm trên một đường tròn.

c) Đường phân giác của BAH^ cắt BC tại K . Gọi I là trung điểm của AK . Chứng minh CI vuông góc AK.

Nguyễn Lê Phước Thịnh
13 tháng 10 2023 lúc 14:37

a: Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right)\)

Xét tứ giác ADHE có \(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)

=>ADHE là hình chữ nhật

=>DE=AH=6(cm)

b: Xét tứ giác ADHE có

\(\widehat{ADH}+\widehat{AEH}=180^0\)

=>ADHE là tứ giác nội tiếp

=>A,D,H,E cùng nằm trên 1 đường tròn

c: \(\widehat{CAK}+\widehat{BAK}=90^0\)

\(\widehat{CKA}+\widehat{HAK}=90^0\)

mà \(\widehat{BAK}=\widehat{HAK}\)

nên \(\widehat{CAK}=\widehat{CKA}\)

=>ΔCAK cân tại C

ΔCAK cân tại C

mà CI là đường trung tuyến

nên CI là đường cao

=>CI vuông góc AK