Tìm x :
(2x+1)*(x+3)=2017
tìm x . 0.05*((2x-2)/2016 +2x/2017+(2x+2)/2018)=3.3-((x-1)/2016+x/2017+(x+1)/2018)
tìm x,y biết :
a, 3 - 2x = 3.(5-x) + 4
b, 4 - ( 7x + 2017 ) = 6 . ( 5-x) - 2017
c, 15 - x (x+1) = 4 - x^2 + 2x
d, -4.(x-5) + 2016 = 3.(8-x)-(2x - 2016)
a, 3 - 2x = 3 . (5 - x) + 4
3 - 2x = 15 - 3x + 4
-2x + 3x = 15 + 4 - 3
x = 16
b, 4 - (7x + 2017) = 6 . (5 - x) - 2017
4 - 7x - 2017 = 30 - 6x - 2017
-7x + 6x = 30 - 2017 - 4 + 2017
-x = 26
x = -26
c, 15 - x . (x + 1) = 4 - x^2 + 2x
15 - x^2 - x = 4 - x^2 + 2x
-x^2 - x + x^2 - 2x = 4 - 15
-3x = -11
x = 11/3
d, -4 . (x - 5) + 2016 = 3 . (8 - x) - (2x - 2016)
-4x + 20 + 2016 = 24 - 3x - 2x + 2016
-4x + 3x +2x = 24 + 2016 - 20 - 2016
x = 4
đúng 100%
Tìm x :
(2x+1)*(x+3)=2017
\(\left(2x+1\right)\left(x+3\right)=2017\)
\(\Leftrightarrow2x\left(x+3\right)+\left(x+3\right)=2017\)
\(\Leftrightarrow2x^2+6x+x+3-2017=0\)
\(\Leftrightarrow2x^2+7x-2014=0\)
\(\Delta=7^2-\left[-4\cdot\left(2\cdot2014\right)\right]=16161\)
\(\Rightarrow x_{1,2}=\frac{-7\pm\sqrt{16161}}{4}\)
Ta có bảng sau:
2x+1 | 2017 | 1 | -2017 | -1 |
x+3 | 1 | 2017 | -1 | -2017 |
x | 1008 | 0 | -1009 | -1 |
x | -2 | 2014 | -4 | -2020 |
Vậy các cặp x thỏa mãn là: (1008;-2);(0;2014);(-1009;-4);(-1;-2020)
Tìm x y biết
a;|x-3|+(3y-1)^2018=0
b(2x-1)^2+|2y-x|-8=12-5x2^2
c (x-2017)^x+1-(x-2017)^x+11=0
cac ban oi ai xong truoc mk k cho nhe
Tìm GTNN
2) B= /3x-1/+/4y+2/-3x
3) C= /2x-1/+/2x+5/+2017
4) D= /x+3/+/2x-1/+/x-1/
tìm x: part 1 : a,(x^3)^2-(x+1)(x-1)=1 b,(x-2)^2-3(x-2)=0 c,(x+2)(x^2-2x+4)-x(x^2+2)=15 d,(x+1)^2-(x+1)(x-2)=0 e,4x(x-2017)-x+2017=0 f,(x+4)^2-16=0 part 2: a,x^3+27+(x+3)(x-9)=0 b,(2x-1)^2-4x^2+1=0 c,2(x-3)+x^2-3x=0 d,x^2-2x+1=6x-6 e,x^3-9x=0
tìm số tự nhiên x biết
a,(2x-1)^2017=(2x-1)^2018
b,1+3+5+....+99=(x-2)^2
Tìm GTNN của
(x-1)(2x-1)(2x^2-3x-1)+2017
Hộ mình nha :3
Đặt : P = \(\left(x-1\right)\left(2x-1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x+1\right)\left(2x^2-3x-1\right)+2017\)
\(=\left(2x^2-3x\right)^2+2016\ge2016\)
Dấu "=" xảy ra <=> \(2x^2-3x=0\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}\)
Vậy GTNN của P là 2016 đạt tại x = 0 hoặc x = 3/2
mik làm xong rồi bạn ạ:))
(2017-x)\(^{\text{3}}\) + (2019-x)\(^{\text{3}}\) + (2x-4036)\(^{\text{3}}\) =0
Tìm x
Đặt 2017-x=a; 2019-x=b
\(\Leftrightarrow a+b=4036-2x\)
\(\Leftrightarrow-\left(a+b\right)=2x-4036\)
Phương trình trở thành: \(a^3+b^3-\left(a+b\right)^3=0\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)-\left(a+b\right)^3=0\)
\(\Leftrightarrow-3ab\left(a+b\right)=0\)
mà -3<0
nên \(ab\left(a+b\right)=0\)
\(\Leftrightarrow\left(2017-x\right)\left(2019-x\right)\left(4036-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2017-x=0\\2019-x=0\\4036-2x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=2019\\x=2018\end{matrix}\right.\)
Vậy: S={2017;2018;2019}
Cho \(\left(2017-x\right)^3=x;\left(2019-x\right)^3=y;\left(2x-4036\right)^3=z\)
Ta có: \(x+y+z=0\)
\(=>x+y=-z\) \(=>\left(x+y\right)^3=-z^3\)
Ta có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3=-z^3-3xy\left(-z\right)+z^3=3xyz\)
Vì (2017-x)3 + (2019-x)3 + (2x-4036)3 =0
=>\(3\left(2017-x\right)\left(2019-x\right)\left(2x-4036\right)=0\)
Gải phương trình được x=2017; x=2019; x=2018
(2017−x)3+(2019−x)3+(2x−4036)3=0
(2017−x)3+(2019−x)3+(2x−4036)3=0
⇔(2017−x)3+(2019−x)3+(2x−4036)3=03⇔(2017−x)3+(2019−x)3+(2x−4036)3=03
⇒ 2017-x=0 ⇒ x= 2017
⇒ 2019-x=0 ⇒ x= 2019
⇒ 2x-4036=0 ⇒x= 2018
Vì x có 3 giá trị nên phương trình vô nghiệm.