Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Hải Yến
Xem chi tiết
Vương Thị Diễm Quỳnh
21 tháng 11 2015 lúc 21:16

a)

gọi 3 STN liên tiếp là a ;a+1;a+2

=>a+a+1+a+2=a+a+a+1+2=3a+3=3(a+1) chia hết cho 3

=> .. có

b)

gọi 4 STN liên tiếp là a;a+1;a+2;a+3

=>a+a+1+a+2+a+3=a+a+a+a+6=4a+6

=> ko chia hết cho 4

 

 

nguyễn thành trung
Xem chi tiết
Đỗ Đức Thắng
Xem chi tiết
nguyenduytinoqb
3 tháng 12 2016 lúc 10:39

A, CÓ

B,KHÔNG

C,GOI BA SO TU NHIEN LIEN TIEP LA A,A+1, A+2,

(a+a+a)+ (1+2)

3a+3 chia hết cho 3 

vi 3chia hết cho 3

vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3

 gọi 4 số tự nhiên liên tiếp là a,á+1,a+2,a+3

(a+a+a+a)+(1+2+3)

4a+6 không chia hết cho 3 vì 4 không chia hết cho 3

vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 3

Lê Thị Huyền Trang
26 tháng 12 2016 lúc 19:34

nếu câu a và câu b có vì sao thì sẽ làm thế nào

Lee Min Ho
28 tháng 7 2017 lúc 7:19

Đáp án của mik là:..............

Nhớ k cho mik nha!

Calone Alice (^-^)
Xem chi tiết
shitbo
16 tháng 12 2018 lúc 11:34

CHòi oi bố đăng nhiều thế con die

a, có

b, ko

c, XÉT 3stn liên tiếp: a,a+1,a+2 (a E N) a có dạng: 3k;3k+1;3k+2 (k E N)

d, tương tự c

❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 21:22

d,

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 21:25

c,

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

pe_mèo
Xem chi tiết

Gọi 3 số tự nhiên liên tiếp là a; a+1 và a+2

TH1: Nếu a chia hết cho 3 => Đề bài đúng

TH2: Nếu a chia 3 dư 1 => a= 3k +1 (k thuộc N)

=> a+2 = 3k+1+2= 3k+3=3(k+1) chia hết cho 3 => a+2 chia hết cho 3 => Đề bài đúng

TH3: Nếu a chia 3 dư 2 => a=3k +2 (k thuộc N)

=> a + 1 = 3k + 2 + 1 = 3k +3 = 3(k+1) chia hết cho 3 => a+1 chia hết cho 3 => Đề bài đúng

TH1 , TH2 , TH3 => Trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3 (ĐPCM)

Bài 5:

Gọi 4 số tự nhiên liên tiếp là b; b+1; b+2 và b+3

Tổng 4 số: b + (b+1) + (b+2) + (b+3) = (b+b+b+b) + (1+2+3) = 4b + 6 = 4(b+1) + 2

Ta có: 4(b+1) chia hết cho 4 vì 4 chia hết cho 4

Nhưng: 2 không chia hết cho 4

Nên: 4(b+1)+2 không chia hết cho 4

Tức là: b+(b+1)+(b+2)+(b+3) không chia hết cho 4 

Vậy: Tổng 4 số tự nhiên liên tiếp không chia hết cho 4 (ĐPCM)

Bài 3: 

\(\overline{7a4b}\) ⋮ 4 ⇒ \(\overline{4b}\)⋮ 4 ⇒ b = 0; 4; 8

Nếu b = 0 ta có: \(\overline{7a40}\)⋮ 7 

⇒ 7040 + a \(\times\) 100 ⋮ 7

1005\(\times\) 7+ 5 + 14a + 2a ⋮ 7 

        5 + 2a ⋮ 7 ⇒ 2a = 2; 9; 16⇒ a = 1; \(\dfrac{9}{3}\);8 (1)

Nếu b = 8 ta có: \(\overline{7a4b}\) = \(\overline{7a48}\)⋮ 7 

⇒ 7048 + a\(\times\) 100 ⋮ 7

1006\(\times\) 7 + 6 + 14a + 2a ⋮ 7

       6 + 2a ⋮ 7 ⇒ 2a = 1; 8; 15 ⇒ a = \(\dfrac{1}{2}\); 4; \(\dfrac{15}{2}\) (2)

Nếu b = 4 ta có: \(\overline{7a4b}\)  =  \(\overline{7a44}\) ⋮ 7

⇒ 7044 + 100a ⋮ 7

1006.7 + 2 + 14a + 2a ⋮ 7 

       2 + 2a ⋮ 7 ⇒ 2a = 5; 12;19 ⇒ a = \(\dfrac{5}{2}\); 6; \(\dfrac{9}{2}\) (3)

Kết hợp (1); (2); (3) ta có:

(a;b) = (1;0); (8;0); (4;8); (6;4)

Nguyễn Quỳnh Anh
Xem chi tiết
Nguyễn Khánh Linh
29 tháng 3 2020 lúc 10:40

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3\(⋮\)3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a \(⋮\)4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

c)https://olm.vn/hoi-dap/detail/1244453028.html?pos=715628858

d)https://olm.vn/hoi-dap/detail/89811124041.html?pos=188188079430

Khách vãng lai đã xóa
Buồn vì chưa có điểm sp
25 tháng 9 2021 lúc 10:49

a)Gọi 3 STN liên tiếp đó là a,a+1,a+2

Ta có: a+(a+1)+(a+2)=3a+3⋮⋮3

b)Gọi 4 STN liên tiếp đó là a,a+1,a+2,a+3

Ta có: a+(a+1)+(a+2)+(a+3)=4a+6

4a ⋮⋮4, 6 ko chia hết cho 4 nên 4 STN liên tiếp ko chia hết cho 4

Khách vãng lai đã xóa
Hàn Thiên Dii
Xem chi tiết
❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 21:20

d,

 Gọi 4 số tự nhiên liên tiếp đó là k;k+1.k+2.k+3 
nếu k chia hết cho 4 thì -> điều phài cm 
nếu k chia cho 4 dư 1 thì k+3 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 2 thì k+2 chia hết cho 4 -> điều phài cm 
nếu k chia cho 4 dư 3 thì k+1 chia hết cho 4 -> điều phài cm 

❊ Linh ♁ Cute ღ
31 tháng 12 2018 lúc 21:26

c,

Gọi 3 số tự nhiên liên tiếp là a, a +1, a + 2 ( a thuộc N ) 
Ta xét 3 trường hợp :
TH1: a chia cho 3 dư 0
Suy ra : a chia hết cho 3
TH2: a chia cho 3 dư 1 
Ta có : a = 3q + 1
a + 2 = 3q +1 + 2
a + 2 = 3q + 3
a + 2 = 3q + 3 .1
a + 2 = 3.(q + 1 )
Suy ra : a +2 chia hết cho 3 
TH3 : a chia cho 3 dư 2
Ta có : a = 3q + 2
a + 1 = 3q +2 + 1
a + 1 = 3q + 3
a + 1 = 3q + 3 .1
a + 1 = 3.(q + 1)
Suy ra : a + 1 chia hết cho 3 
Vậy trong 3 số tự nhiên liên tiếp có duy nhất 1 số chia hết cho 3 

Inzarni
Xem chi tiết
Tạ Đức Hoàng Anh
8 tháng 1 2021 lúc 14:53

a) Chứng minh ba số tự nhiên liên tiếp chia hết cho 3

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right)\)

+ Với \(n:3\)dư \(1\)\(\Rightarrow\)\(n=3k+1\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+2\)ta có: \(n+2=3k+1+2=3k+3⋮3\)

+ Với \(n:3\)dư \(2\)\(\Rightarrow\)\(n=3k+2\)\(\left(k>0\right)\)

Thay \(n=3k+1\)vào \(n+1\)ta có: \(n+1=3k+1+2=3k+3⋮3\)

Vậy ba số tự nhiên liên tiếp luôn chia hết cho 3

b) Chứng minh bốn số tự nhiên liên tiếp chia hết cho 4

Gọi ba số tự nhiên liên tiếp đó là: \(n;\)\(n+1;\)\(n+2;\)\(n+3\)

Suy ra tích ba số đó là: \(n.\left(n+1\right).\left(n+2\right).\left(n+4\right)\)

+ Với \(n:4\)dư \(1\)\(\Rightarrow\)\(n=4k+1\)\(\left(k>0\right)\)

Thay \(n=4k+1\)vào \(n+3\)ta có: \(n+3=4k+1+3=4k+4⋮4\)

+ Với \(n:4\)dư \(2\)\(\Rightarrow\)\(n=4k+2\)\(\left(k>0\right)\)

Thay \(n=4k+2\)vào \(n+2\)ta có: \(n+2=4k+2+2=4k+4⋮4\)

+ Với \(n:4\)dư \(3\)\(\Rightarrow\)\(n=4k+3\)\(\left(k>0\right)\)

Thay \(n=4k+3\)vào \(n+1\)ta có: \(n+1=4k+1+3=4k+4⋮4\)

Vậy bốn số tự nhiên liên tiếp luôn chia hết cho 4

Khách vãng lai đã xóa
Lê Minh Vũ
20 tháng 10 2021 lúc 22:42

\(a)\) Gọi ba số tự nhiên liên tiếp là \(a,a+1,a+2\)

Nếu \(a⋮3\) thì bài toán được chứng minh

Nếu \(a⋮3̸\) thì \(a=3k+1\) hoặc \(a=3k+2\left(k\in N\right)\)

Nếu \(a=3k+1\) thì \(a+2=3k+1+2=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên\(3k+3⋮3\))

Nếu \(a=3k+2\) thì \(a+1=3k+2+1=3k+3⋮3\)

(vì \(3k⋮3\)\(3⋮3\) nên \(3k+3⋮3\))

Vậy trong ba số tự nhiên liên tiếp, có \(1\) số chia hết cho \(3\)

Khách vãng lai đã xóa
Lê Minh Vũ
20 tháng 10 2021 lúc 22:47

\(b)\)Đặt \(4\) số tự nhiên liên tiếp là: \(n,n+1,n+2,n+3\)

Nếu \(n⋮4\) thì bài toán đc chứng minh

Nếu \(n⋮4\)\(1\) \(\Rightarrow\) \(4k+1\) \(\Rightarrow\) \(n=3=4k+1+3=4k+4⋮4\)

Nếu \(n⋮4\)\(2\) \(\Rightarrow\) \(4k+2\)\(\Rightarrow\)  \(n=2=4k+2+2=4k+4⋮4\)

Nếu \(n⋮4\)\(3\) \(\Rightarrow\) \(4k+3\)\(\Rightarrow\)  \(n=1=4k+3+1=4k+4⋮4\)

Vậy trong 4 số tự nhiên liên tiếp có \(1\) số chia hết cho \(4\)

Khách vãng lai đã xóa
Lê thu trang
Xem chi tiết
gui
9 tháng 3 2020 lúc 15:50

xnxx.com

Khách vãng lai đã xóa
Bí Mật
9 tháng 3 2020 lúc 15:51

amlvxql

Khách vãng lai đã xóa
Huỳnh Quang Sang
9 tháng 3 2020 lúc 16:04

a) Gọi ba số tự nhiên liên tiếp là a, a+1,a + 2\(\left(a\inℕ\right)\)

Nếu a = 3k thì \(a⋮3\)

Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3(k + 1)

=> \(3\left(k+1\right)⋮3\)

=> \(\left(a+2\right)⋮3\)

Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3(k+1)

=> \(3\left(k+1\right)⋮3\)

=> \(\left(a+1\right)⋮3\)

Vậy trong ba số tự nhiên liên tiếp,có một số chia hết cho 3

b) Gọi bốn số tự nhiên liên tiếp là a,a + 1,a + 2,a + 3 \(\left(a\inℕ\right)\)

Nếu a = 4k thì a chia hết cho 4

Nếu a = 4k + 1 thì a + 3 = 4k + 4 chia hết cho 4

Nếu a = 4k + 2 thì a + 2 = 4k + 4 chia hết cho 4

Nếu a = 4k + 3 thì a + 1 = 4k + 4 chia hết cho 4

Vậy : ...

Khách vãng lai đã xóa
Đinh Thảo Duyên
Xem chi tiết
Lê Nguyên Hạo
1 tháng 9 2016 lúc 14:08

Gọi ba số tự nhiên liên tiếp là \(n,n+1,n+2\)

Xét n = 3k => n chia hết cho 3 (đpcm)

Xét n = 3k + 1 => n + 2 chia hết cho 3 (3k + 3) (đpcm)

Xét n = 3k + 2 => n + 1 chia hết cho 3 (3k + 3) (đpcm)

Giải tương tự có: Gọi 4 số tự nhiên liến tiếp là: \(n,n+1,n+2,n+3\)

Xét n = 4k => n chia hết cho 4 (4k) (đpcm)

Xét n = 4k + 1 => n + 3 chia hết cho 4 (4k + 4) (đpcm)

Xét n = 4k + 2 => n + 2 chia hết cho 4 (4k + 4) (đpcm)

Xét n = 4k + 3 => n + 1 chia hết cho 4 (4k + 4) (đpcm)

zZz_Nhok lạnh lùng_zZz
1 tháng 9 2016 lúc 14:07

Gọi 3 số tự nhiên liên tiếp là: a; a + 1; a + 2

+ Nếu a = 3k thì a chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)

+ Nếu a = 3k + 1 thì a + 2 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)

+ Nếu a = 3k + 2 thì a + 1 = 3k + 3 = 3.(k + 1) chia hết cho 3, trong 3 số tự nhiên liên tiếp có 1 số chia hết cho 3 (đpcm)

Như vậy, trong 3 số tự nhiên liên tiếp luôn có 1 số chia hết cho 3

Phần còn lại lm tương tự nhé!

Isolde Moria
1 tháng 9 2016 lúc 14:11

(+) Gọi dãy 3 số tự nhiên lên tiếp bất kì là a ; a+1 ; a+2

Với a chia hết cho 3 => dãy có 1 số chia hết cho 3Với a chia 3 dư 1 => a+2 chia hết cho 3 => dãy có 1 số chia hết cho 3Với a chia 3 dư 2 => a+1 chia hết cho 3=> dãy có 1 số chia hết cho 3

Vậy trong ba số tự nhiên liên tiếp có một số chia hết cho 3

(+) Gọi dãy 3 số tự nhiên lên tiếp bất kì là a ; a+1 ; a+2 ; a+3

Với a chia hết cho 4 => dãy có 1 số chia hết cho 4Với a chia 4 dư 1 => a+3 chia hết cho 4 => dãy có 1 số chia hết cho 4Với a chia 3 dư 2 => a+2 chia hết cho 4 => dãy có 1 số chia hết cho 4Với a chia 4 dư 3 => a+1 chia hết cho 4 => dãy có 1 số chia hết cho 4

Vậy trong 4 số tự nhiên liên tiếp có một số chia hết cho 4