Cho \(N=\frac{\sqrt{x}}{\sqrt{x}+1}\)và \(H=\frac{x-4}{x+2\sqrt{x}}\)
so sánh N với H
Cho các biểu thức $\mathrm{A}=\frac{2}{\sqrt{x}+1}$ và $\mathrm{B}=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{\mathrm{x}}+1}$ với $\mathrm{x}>0$
a) Tính giá trị của biểu thức A khi $\mathrm{x}=81$.
b) Rút gọn biểu thức $\mathrm{P}=\mathrm{B}: \mathrm{A}$.
c) So sánh $P$ với $\frac{1}{2}$.
a, Ta có : \(x=81\Rightarrow\sqrt{x}=9\)
Thay \(\sqrt{x}=9\)vào biểu thức A ta được :
\(A=\frac{2}{9+1}=\frac{2}{10}=\frac{1}{5}\)
b, Ta có : \(P=\frac{B}{A}\)hay\(P=\frac{\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}}{\frac{2}{\sqrt{x}+1}}\)
\(=\frac{1+\sqrt{x}}{x+\sqrt{x}}.\frac{\sqrt{x}+1}{2}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c, Ta có \(\frac{1}{2}=\frac{\sqrt{x}}{2\sqrt{x}}\)mà \(\sqrt{x}< \sqrt{x}+1\)
nên \(P>\frac{1}{2}\)
a) \(A=\frac{2}{\sqrt{x}+1}=\frac{2}{\sqrt{81}+1}=\frac{2}{9+1}=\frac{1}{5}\)
b) \(B=\frac{1}{x+\sqrt{x}}+\frac{1}{\sqrt{x}+1}\)
\(=\frac{1+\sqrt{x}}{\left(1+\sqrt{x}\right)\sqrt{x}}=\frac{1}{\sqrt{x}}\)
\(\Rightarrow P=\frac{B}{A}=\frac{1}{\sqrt{x}}\div\frac{2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{2\sqrt{x}}\)
c) Ta có: \(P=\frac{\sqrt{x}+1}{2\sqrt{x}}=\frac{1}{2}+\frac{1}{\sqrt{x}}+\frac{1}{2}+0=\frac{1}{2}\)
=> P>1/2
a)Thay vào biều thức , ta được
Vậy thì
b)
c) Ta có
Ta có nên
Cho B=\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)
a) Rút gọn
b) So sánh B và \(\frac{1}{B}\)
So sánh: \(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}\) và \(N=\frac{\sqrt{x}-3}{2\sqrt{x}}\)
\(ĐKXĐ:x\ne1;x\ne0\)
\(A=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{2\sqrt{x}\left(\sqrt{x}-1\right)}{2\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}\)
\(N=\frac{\sqrt{x}-3}{2\sqrt{x}}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+1\right)2\sqrt{x}}=\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
Ta có :
\(x\ge0>-3\)
\(\Leftrightarrow x>-3\)
\(\Leftrightarrow x+\left(x-2\sqrt{x}\right)>-3+\left(x-2\sqrt{x}\right)\)
\(\Leftrightarrow2x-2\sqrt{x}>x-2\sqrt{x}-3\)
\(\Leftrightarrow\frac{2x-2\sqrt{x}}{2x+2\sqrt{x}}>\frac{x-2\sqrt{x}-3}{2x+2\sqrt{x}}\)
\(\Leftrightarrow A>N\)
1. Cho E= \(\frac{\sqrt{x-\sqrt{4\left(x-1\right)}}+\sqrt{x+\sqrt{4\left(x+1\right)}}}{\sqrt{x^2-4\left(x+1\right)}}\) \(\left(1-\frac{1}{x-1}\right)\)
RG E.
2. Cho E= \(\frac{1+\sqrt{1-x}}{1-x+\sqrt{1-x}}+\frac{1-\sqrt{1+x}}{1+x-\sqrt{1+x}}+\frac{1}{\sqrt{1+x}}\)
a) RGBT
b) So sánh E với \(\frac{\sqrt{2}}{2}\)
So sánh P= \(\frac{\sqrt{x}-4}{\sqrt{x}}.\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)với 2.
giúp mk với!!!
Ta có: \(P=\frac{\sqrt{x}-4}{\sqrt{x}}\times\frac{x+\sqrt{x}+1}{\sqrt{x}-4}\)
\(P=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)\(\left(ĐK:x>0\right)\)
Ta lấy \(P-2=\frac{x+\sqrt{x}+1}{\sqrt{x}}-2\)
\(=\frac{x+\sqrt{x}+1-2\sqrt{x}}{\sqrt{x}}\)
\(=\frac{x-\sqrt{x}+1}{\sqrt{x}}\)
\(=\frac{\left(x-\sqrt{x}+\frac{1}{4}\right)+\frac{3}{4}}{\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}\)
Vì \(x>0\Rightarrow\sqrt{x}>0\)
\(\left(\sqrt{x}-\frac{1}{2}\right)^2\ge0\Leftrightarrow\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
\(\Rightarrow\frac{\left(\sqrt{x}-\frac{1}{2}\right)^2+\frac{3}{4}}{\sqrt{x}}>0\)
\(\Rightarrow P-2>0\)
\(\Rightarrow P>2\)
Học tốt
\(A=\frac{\sqrt{x}-1}{\sqrt{x}-2}+\frac{\sqrt{x}-4}{\sqrt{x-3}}-\frac{x-3\sqrt{x}+1}{x-5\sqrt{x}+6}\)
So Sánh A với 1
Cho A =\(\left(\frac{x-\sqrt{x}+7}{x-4}+\frac{1}{\sqrt{x}-2}\right):\left(\frac{\sqrt{x}+2}{\sqrt{x}-2}-\frac{\sqrt{x}-2}{\sqrt{x}+2}-\frac{2\sqrt{x}}{x-4}\right)\)với x > 0 , x \(\ne\)4
a, Rút gọn A
b, So sánh A với \(\frac{1}{A}\)
Cho biểu thức A =\(\frac{x+\sqrt{x}+1}{\sqrt{x}+2}\) và B =\(\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\) với x > 0; x ≠ 1
1) Tính giá trị của A khi x = 16
2) Chứng minh rằng B = \(\frac{\sqrt{x}+2}{\sqrt{x}}\)
3) Cho P = A.B. So sánh P với 3.
1) Thay x=16 vào A ta có:
A=\(\frac{16+\sqrt{16}+1}{\sqrt{16}+2}\)
A=\(\frac{16+4+1}{4+2}\)
A=\(\frac{21}{6}=\frac{7}{2}\)
\(2,\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{x-\sqrt{x}}\)
\(=\frac{2\sqrt{x}}{\sqrt{x}-1}-\frac{x-\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{2x-x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{x+\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{x-\sqrt{x}+2\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}=\frac{\sqrt{x}+2}{\sqrt{x}}\)\(\left(đpcm\right)\)
\(3,P=A.B=\frac{x+\sqrt{x}+1}{\sqrt{x}+2}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{x+\sqrt{x}+1}{\sqrt{x}}\)
Ta thấy \(\left(\sqrt{x}-1\right)^2>0\Rightarrow x-2\sqrt{x}+1>0\)
\(\Rightarrow x+\sqrt{x}+1>3\sqrt{x}\)
\(\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>\frac{3\sqrt{x}}{\sqrt{x}}\Rightarrow\frac{x+\sqrt{x}+1}{\sqrt{x}}>3\left(đpcm\right)\)