Ta có : \(\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
\(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}=1-\frac{2}{\sqrt{x}}\)
ta xét : \(\frac{2}{\sqrt{x}}\ge\frac{1}{\sqrt{x}+1}\)
\(\Rightarrow1-\frac{1}{\sqrt{x}+1}\ge1-\frac{2}{\sqrt{x}}\Leftrightarrow N\ge H\)
Ta có
N = \(\frac{\sqrt{x}}{\sqrt{x}+1}=1-\frac{1}{\sqrt{x}+1}\)
M = \(\frac{x-4}{x+2\sqrt{x}}=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}}\)
= \(1-\frac{2}{\sqrt{x}}\)
=> N - M = \(\frac{2}{\sqrt{x}}-\frac{1}{\sqrt{x}+1}=\frac{2\sqrt{x}+2-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}>0\)
Vậy N > M