2019 x 74+ 2019 x 25 + 2019
TA CÓ 25-Y^2=8(X-2019)^2
SUY RA 8(X-2019)^2 LỚN HƠN HOẶC BẰNG 25
SUY RA (X-2019)^2 LỚN HƠN HOẶC BẰNG 25 PHẦN 8
MÀ (X-2019)^2 LÀ SỐ CHÍNH PHƯƠNG
SUY RA (X-2019)^2 =0 HOẶC 1
NẾU (X-2019)^2 =0
SUY RA X-2019=0
SUY RA X=2019
SUY RA 25 -Y^2=0
SUY RA Y^2=25
SUY RA Y=5
NẾU (X-2019)^2 =1
SUY RA X-2019=1
SUY RA X=2020
HOẶC X-2019=-1
SUY RA X= 2018
thiếu 1 số chỗ đó
cứ thấy sai sai chỗ nào ý
a) 2019/2020 x 4/11 + 2019/2020 x 5/11 + 2019/2020 x 2/11
b) 17/14 x 25/27 - 1/14 x 25/27 - 2/14 x 25/27
\(a.=\dfrac{2019}{2020}\times\left(\dfrac{4}{11}+\dfrac{5}{11}+\dfrac{2}{11}\right)\\ =\dfrac{2019}{2020}\times1=\dfrac{2019}{2020}\\ b.=\dfrac{25}{27}\times\left(\dfrac{17}{14}-\dfrac{1}{14}-\dfrac{2}{14}\right)\\ =\dfrac{25}{27}\times1=\dfrac{25}{27}\)
Tính nhanh :
( -2019 - 2019 - 2019 - 2019 ) x (- 25)
Giúp mình pls
( - 2019 - 2019 - 2019 - 2019 ) x ( -25 )
= (-4 ) x 2019 x ( - 25 )
= ( -4 ) x ( -25 ) 2019
= 100 x 2019
= 201900
học tốt
tính nhanh: 26 x 84+74 x 85
2017 x 2018 +2019/ 2019 x 2018 - 2017.
giải đầy đủ, ai nhanh nhất mk tick, 3 cái luôn
26 x 84 + 74 x 85
= 26 x 84 + 74 x 84 + 74
= 84 x (26 + 74) + 74
= 84 x 100 + 74
= 840 + 74
= 914
\(\frac{2017\times2018+2019}{2019\times2018-2017}\)
= \(\frac{2019\times2018-2\times2018+2019}{2019\times2018-2017}\)
= \(\frac{2019\times2018-4036+2019}{2019\times2018-2017}\)
= \(\frac{2019\times2018-2017}{2019\times2018-2017}\)
= 1
Dùng máy tính đó
Hoặc động cái não mà nghĩ đi với
tính nhanh: 26 x 84+74 x 85
2017 x 2018 +2019/ 2019 x 2018 - 2017.
giải đầy đủ, ai nhanh nhất mk tick, 3 cái luôn.
26x84+74x85=8474
2017x2018+2019/2019x2018-2017=4070307
câu trả lời đấy cu
Lời giải:
$x:0,1+x:0,5-x:25\text{%}+x+x=2019$
$x\times 10+x\times 2-x\times 4+x+x=2019$
$x\times (10+2-4+1+1)=2019$
$x\times 10=2019$
$x=2019:10=201,9$
Đáp án A.
Cho \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
CMR:\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
Giups mk vs ạ ai nhanh mk tick nha
Lời giải:
Đặt \(\frac{x}{a}=m; \frac{y}{b}=n; \frac{z}{c}=p\). Khi đó:
ĐKĐB $\Leftrightarrow \frac{a^2m^2+b^2n^2+c^2p^2}{a^2+b^2+c^2}=m^2+n^2+p^2$
$\Rightarrow a^2m^2+b^2n^2+c^2p^2=(a^2+b^2+c^2)(m^2+n^2+p^2)$
$\Leftrightarrow a^2n^2+a^2p^2+b^2m^2+b^2p^2+c^2m^2+c^2n^2=0$
$\Rightarrow an=ap=bm=bp=cm=cn=0$
Vì $a,b,c\neq 0$ nên $m=n=p=0$
$\Rightarrow x=y=z=0$
Khi đó:
$\frac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0$
$\frac{x^{2019}}{a^{2019}}=\frac{y^{2019}}{b^{2019}}=\frac{z^{2019}}{c^{2019}}=0$
$\Rightarrow$ đpcm
Cho \(A=x^6-2019.x^5+2019.x^4-2019.x^3+2019.x^2-2019.x+2019\) tại x = 2018
Vì \(x=2018\Rightarrow x+1=2019\)
Thay x+1=2019 vào biểu thức A ta được :
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-...-\left(x+1\right)x+x+1\)
\(=x^6-x^6-x^5+x^5+x^4-...-x^2-x+x+1\)
\(=1\)
\(A=x^6-2019x^5+2018x^4-2019x^3+2019x^2-2019x+2019\)
\(=x^6-2018x^5-x^5+2018x^4+x^4-2018x^3-x^3+2018x^2+x^2\)
\(-2018x-x+2019\)
\(=x^5\left(x-2018\right)-x^4\left(x-2018\right)-x^3\left(x-2018\right)+x^2\left(x-2018\right)\)
\(+x\left(x-2018\right)-\left(x-2018\right)+1\)
= 1
Vì \(x=2018\Rightarrow x+1=2019\)
Thay \(x+1=2019\) vào biểu thức \(A\) ta được :
\(A=x^6-\left(x+1\right)x^5+\left(x+1\right)x^4-\left(x+1\right)x^3+\left(x+1\right)x^2-\left(x+1\right)x+\left(x-1\right)\)
\(=x^6-x^6-x^5+x^5-x^4+x^4-x^3+x^3-x^2+x^2-x+x+1\)
\(=1\)
Chứng minh rằng nếu \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\) thì: \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)
ĐKXĐ: \(\left\{{}\begin{matrix}a\ne0\\b\ne0\\c\ne0\end{matrix}\right.\)Ta có: \(\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)\cdot\dfrac{x^2+y^2+z^2}{a^2+b^2+c^2}=\left(a^2+b^2+c^2\right)\cdot\left(\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}+\dfrac{z^2}{c^2}\right)\)
\(\Leftrightarrow x^2+y^2+z^2=x^2+\dfrac{x^2\cdot\left(b^2+c^2\right)}{a^2}+y^2+\dfrac{y^2\left(a^2+c^2\right)}{b^2}+z^2+\dfrac{z^2\cdot\left(a^2+b^2\right)}{c^2}\)
\(\Leftrightarrow x^2\cdot\dfrac{b^2+c^2}{a^2}+y^2\cdot\dfrac{a^2+c^2}{b^2}+z^2\cdot\dfrac{a^2+b^2}{c^2}=0\)(1)
Vì (1) luôn không âm mà a,b,c≠0
nên x=y=z=0
⇒\(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{0^{2019}+0^{2019}+0^{2019}}{a^{2019}+b^{2019}+c^{2019}}=0\)
mà \(\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}=\dfrac{0^{2019}}{a^{2019}}+\dfrac{0^{2019}}{b^{2019}}+\dfrac{0^{2019}}{c^{2019}}=0\)
nên \(\dfrac{x^{2019}+y^{2019}+z^{2019}}{a^{2019}+b^{2019}+c^{2019}}=\dfrac{x^{2019}}{a^{2019}}+\dfrac{y^{2019}}{b^{2019}}+\dfrac{z^{2019}}{c^{2019}}\)